A Bootstrap-Based Covariate Selection Method for Modeling the Risk of Lightning-Induced Fires at a Local Scale: A Case Study in Northwest Spain

Celestino Ordóñez,1 Javier Roca-Pardiñas,2 Fernando Castedo-Dorado,3 and José R. Rodríguez-Pérez3
1Department of Mining Exploitation and Prospecting, University of Oviedo, Oviedo, Spain; 2Department of Statistics and Operations Research, University of Vigo, C/Torrecedeira, Vigo, Pontevedra, Spain; 3Geomatics Engineering Research Group, University of León, Ponferrada, León, Spain

ABSTRACT

In lightning-induced fire risk prediction models, the number of potential predictors is usually high, with some redundancy among them. It is therefore important to select the best subset of predictors that obtain models with the greatest discrimination capacity. With this aim in mind, the logistic generalized linear model was used to estimate lightning-induced fire occurrence using a case study of the province of León (northwest Spain). A bootstrap-based test was used to obtain the optimal number of predictors and to model this optimal number of predictors displaying the largest area under the receiver operating characteristics curve. The results show that of the 16 variables initially considered, only three were necessary to obtain the model with the best discriminatory capacity for estimating lightning-induced fire occurrence. Moreover, this model can be considered equivalent to another nine alternative models with three covariates. Both the optimal and the equivalent models are useful in the spatially explicit assessment of fire risk, the planning and coordination of regional efforts to identify areas at greatest risk, and the design of long-term wildfire management strategies. The methodology used for this case study can be applied to other wildfire risk assessment situations where multiple and interconnected covariates are available.

Received 4 July 2011; revised manuscript accepted 23 October 2011.
Address correspondence to Celestino Ordóñez, Department of Environmental Engineering, University of Vigo, C/Maxwell s/n, Campus Lagoas-Marcosende, 36310-Vigo, Pontevedra, Spain. E-mail: cgalan@uvigo.es
SELECTING VARIABLES FOR MODELING LIGHTNING FIRE RISK

Key Words: bootstrap-based test, variable selection, logistic generalized linear model, area under the ROC curve, lightning-induced fire risk.

INTRODUCTION

In the countries around the Mediterranean Basin and in other Mediterranean-type areas of the world, forest fires are predominantly caused by humans (Vázquez and Moreno 1998). Lightning is also an important ignition cause (Pyne et al. 1996), however, and lightning-ignited fires can burn larger areas of forest than those caused by humans because of remoteness and aggregation in time and space (Podur et al. 2003).

Several investigators have reported that lightning-induced fires do not occur at random but tend to start in specific places (Vankat 1985). The effectiveness of individual lightning strikes in igniting a forest fire is potentially affected by the following factors: variations in lightning properties such as quantity, polarity and intensity; forest fuel moisture properties resulting from recent weather conditions including rainfall, temperature, and humidity; topographic variables that may affect the aforementioned variables (Diaz-Avalos et al. 2001); and rates of combustion, which vary according to the type of fuel. The relative importance of all these variables varies according to the scale considered; however, it is unrealistic to present a general model for large scales, thus making it advisable to develop models at local or regional scales (Pacheco et al. 2009).

In order to prevent, minimize, and mitigate the effects of lightning-induced forest fires, a priori risk analysis and maps indicating vulnerable areas are very useful (Bonazountas et al. 2005). In the literature, different statistical methods have been used to document spatial patterns of lightning-induced fires, namely, linear regression, logistic regression, multivariate discriminant analysis, classification and regression trees, neural networks, and so on. Logistic regression analysis has been particularly successful in predicting fire occurrence and in examining the most critical factors involved in fire incidence (García et al. 1995; Vasconcelos et al. 2001; Andrews et al. 2003; Wotton and Martell 2005; Martínez et al. 2009; Vilar et al. 2010).

One of the main problems associated with the development of a logistic fire risk model is identifying the best subsets of predictors that establish the model or models with the best discriminatory capacity. This problem is important both in human-caused and lightning-induced risk assessment because the number of potential covariates is often very high and many predictors are mutually redundant (Martínez et al. 2009). In general, the more variables added to a model, the better the apparent fit of the observed data; however, the inclusion of irrelevant variables can increase the variance of the ensuing estimates (leading to a loss in the predictive capacity of the model) and can make the fitted model difficult to interpret.

Automatic selection procedures such as stepwise selection or backward elimination are usually not very appropriate because the selected models can contain irrelevant variables (Hosmer and Lemeshow 2000). In addition, for practical applications of the model, some of the potential explanatory variables are not easily available or cannot be obtained accurately. The bootstrap-based test used in this study overcomes these drawbacks since it detects optimal combination of the variables that best
discriminate between groups (two, in our case—presence and absence), producing parsimonious prediction models.

The aim of this research was to test the bootstrap method for developing a lightning-induced fire prediction model, using data for a case study referring to the province of León (northwest Spain). The applicability of this methodology for fire risk assessment is also discussed.

METHODS AND MATERIALS

Data

The data used were obtained from five different sources over a 6-year period (2002–2007), although only the months of May to September (inclusive) were considered because lightning strikes and lightning-caused fires occurred almost exclusively in this period (Castedo-Dorado et al. 2011). The period 2002–2007 was selected because: (1) the year 2002 was the first year in which wildfire ignition points were recorded using X,Y coordinates; (2) it admits the assumption that land cover does not differ from that of 2003, the year for which land cover data was available; and (3) since 2001 flash detection efficiency has exceeded 90% and average location accuracy has improved to within 0.5 km.

The lightning location database (supplied by AEMET, the Spanish Meteorological Agency) provides information such as lightning intensity, polarity, date and time, estimated coordinates of lightning strikes, and quality of location estimates. In order to reduce the uncertainty of the number of strikes in each type of land cover, only flashes with $\chi^2$ equal to or less than 2 and a long semi-axis radius of the error ellipse equal to or less than 1.5 km were used (Nieto et al. 2006); this is important in the studied area (the province of León) because it is characterized by fragmented land cover. Therefore the database used for this study included 78,256 lightning flashes.

The Spanish Ministry of the Environment and Rural and Marine Affairs provided data on ignition locations of lightning-induced wildfires. This database includes information about detection time, ignition location, and estimated cause of ignition. Topographic variables (altitude, aspect and slope) were calculated using the digital elevation model (DEM) provided by the Spanish National Cartographic Database.

The composition and structure of land cover was obtained from the digital Spanish Forest Map for the province of León (Spanish Ministry of the Environment 2003). To deal with more homogeneous types of land cover, the categories were grouped in the following classes: coniferous woodland, broadleaf woodland, mixed woodland, non-combustible areas, gallery woodland, open woodland, mosaics of woodland and others, shrubland, grassland, recently deforested areas, and recent forest plantations and reforestations.

Provided by AEMET was daily meteorological data (hourly or daily observations of temperature, relative humidity, and rainfall) that were derived from raw data recorded at 344 weather stations located in León and nearby provinces. Geostatistical methods were used to interpolate weather station data. Universal kriging was used for rainfall and relative humidity data calculations, whereas co-kriging interpolation was used to model temperature.

The studied area (province of León, Figure 1A) was partitioned in pixels of $3 \times 3$ km, resulting in a total of 1882 pixels. All digital information available for the
Selecting Variables for Modeling Lightning Fire Risk

Figure 1. Studied area. (A) The province of León, Spain and (B) the location and number of observed lightning-induced fires for 2002–2007.

analysis was converted to this 3 × 3 km spatial resolution. This particular grid size was selected because it represents a compromise between resolution requirements, interpolation accuracy, and computation cost. Lightning-induced fires occurred in 179 pixels in the period 2002–2007 (Figure 1B).

According to previous studies (Castedo-Dorado et al. 2011), 16 variables related to lightning activity, topography, vegetation cover, lightning–vegetation cover interaction, and meteorology were selected for modeling and predicting lightning-induced fires (Table 1).

Methods

The spatial patterns of occurrence were analysed by seeking relationships between the presence/absence of lightning-caused forest fires in a 3 × 3 km grid and the potential explanatory variables converted to this scale by a geographic information system.

Table 1. Potential explanatory variables used in the bootstrap analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td>Mean altitude (m)</td>
</tr>
<tr>
<td>X₂</td>
<td>Mean slope (%)</td>
</tr>
<tr>
<td>X₃</td>
<td>Number of strikes (flashes)</td>
</tr>
<tr>
<td>X₄</td>
<td>Number of strikes in shrubland</td>
</tr>
<tr>
<td>X₅</td>
<td>Mean intensity (kA) of negative flashes</td>
</tr>
<tr>
<td>X₆</td>
<td>Mean intensity (kA) of positive flashes</td>
</tr>
<tr>
<td>X₇</td>
<td>Number of positive flashes</td>
</tr>
<tr>
<td>X₈</td>
<td>Percentage of coniferous woodland</td>
</tr>
<tr>
<td>X₉</td>
<td>Percentage of agricultural areas</td>
</tr>
<tr>
<td>X₁₀</td>
<td>Percentage of forested areas</td>
</tr>
<tr>
<td>X₁₁</td>
<td>Number of strikes in coniferous woodland</td>
</tr>
<tr>
<td>X₁₂</td>
<td>Number of strikes in broadleaf woodland</td>
</tr>
<tr>
<td>X₁₃</td>
<td>Number of strikes in forested areas</td>
</tr>
<tr>
<td>X₁₄</td>
<td>Number of strikes in agricultural areas</td>
</tr>
<tr>
<td>X₁₅</td>
<td>Number of thunderstorms days without rainfall</td>
</tr>
<tr>
<td>X₁₆</td>
<td>Number of days with moisture lower than average moisture</td>
</tr>
</tbody>
</table>
The 1882 pixels representing the province of León were coded with 0 or 1, representing, respectively, the absence or occurrence of one or more lightning-induced ignitions in the period 2002–2007. In a logistic regression framework, discrimination between the two possible states of the binary response depends on a set of \( p \) continuous covariates \( (X_j) \). The expression of a logistic generalized linear model (GLM) (McCullagh and Nelder 1989) is given by:

\[
p(Y = 1|X) = \frac{\exp(\alpha + \alpha_1 \cdot X_1 + \ldots + \alpha_p \cdot X_p)}{1 + \exp(\alpha + \alpha_1 \cdot X_1 + \ldots + \alpha_p \cdot X_p)}
\]

where \( X_j \) \((j = 1, \ldots, p)\) are the explanatory covariates, \( \alpha \) is a constant, and \( \alpha_j \) \((j = 1, \ldots, p)\) are the unknown parameters.

The proposed bootstrap-based test for covariate selection selects a GLM containing a subset of \( q \) variables \((q \leq p)\), and eliminates the remainder from the model, according to an optimal criterion based on a receiver operation characteristic (ROC) curve (Swets and Pickett 1982). In practice, the area under the ROC curve (AUC) is one of the most widely used criteria for comparing the discriminatory capacity of a series of binary response regression models and the AUC is more suitable when the variable is Boolean.

The ROC curve relies on false/true–positive/negative tests, where sensitivity is the proportion of event responses that were predicted to be events and specificity is the proportion of non-event responses that were predicted to be non-events. The plot of sensitivity \( (i.e., \text{hit rate}) \) versus 1-specificity \( (i.e., \text{false alarm rate}) \) is the ROC curve; the AUC measures the accuracy of the detection system and does not require any assumptions concerning the shape, form, or underlying signal and noise distributions (Saveland and Neuenschwander 1990). This statistic is measure of model discrimination: 0.5 suggests no discrimination, 0.7–0.8 suggests acceptable discrimination and 0.8–0.9 suggests excellent discrimination (Hosmer and Lemeshow 2000).

**Bootstrap-Based Test for Covariate Selection**

In order to determine the variables to be introduced into the GLM in (1), a bootstrap-based test was used. For a given size \( k \), let AUC \((k)\) be the AUC obtained with the best subset of \( k \) variables:

\[
\text{AUC}(k) = \max_{1 \leq j_1 < j_2 < \ldots < j_k \leq p} \text{AUC}_{j_1, \ldots, j_k}
\]

where AUC \(_{j_1, \ldots, j_k}\) is the AUC obtained from the ROC constructed with the theoretical probabilities given by the GLM:

\[
p_{j_1, \ldots, j_k}(X) = \frac{\exp(\hat{\alpha} + \hat{\alpha}_{j_1} \cdot X_{j_1} + \ldots + \hat{\alpha}_{j_k} \cdot X_{j_k})}{1 + \exp(\hat{\alpha} + \hat{\alpha}_{j_1} \cdot X_{j_1} + \ldots + \hat{\alpha}_{j_k} \cdot X_{j_k})}
\]

Given a subset of size \( q \), consideration is given to a test for the null hypothesis:

\[
H_0 (q) : \text{AUC}(q) \geq \max_{r > q} \text{AUC}(r)
\]

versus the general hypothesis:

\[
H_1 : \text{AUC}(q) < \max_{r > q} \text{AUC}(r)
\]
Selecting Variables for Modeling Lightning Fire Risk

That is to say, under the null hypothesis, the maximum AUC is obtained with some subset of \( q \) covariates whereas the maximum AUC is obtained with some combination of \( r > q \) covariates.

To test \( H_0 \), given the sample \( \{X_i, Y_i\}_{i=1}^n \) of \((X,Y)\), we used the following test statistics:

\[
\hat{T} = \max_{r \geq q} \hat{\text{AUC}}(r) - \hat{\text{AUC}}(q)
\]

with 
\[
\hat{\text{AUC}}(k) = \max_{1 \leq j_1 < \ldots < j_k \leq p} \hat{\text{AUC}}_{j_1,\ldots,j_k}
\]

where \( \hat{\text{AUC}}_{j_1,\ldots,j_k} \) is the AUC obtained from the estimated probabilities \( \hat{p}_{j_1,\ldots,j_k}(X_i) \) for \( i = 1, \ldots, n \), obtained by fitting the model in Eq. (3) and leaving out the \( i^{th} \) data point.

This estimation can be carried out using the local scoring algorithm (Opsomer 2000). Briefly, the local scoring algorithm is analogous to the use of iteratively reweighted least squares (McCullagh and Nelder 1989) for solving likelihood and nonlinear regression equations.

Note that if the null hypothesis is verified, then \( \hat{T} \) should be close to zero, but will generally be positive. Therefore, the test rule for checking \( H_0 \) is that the null hypothesis is rejected if \( \hat{T} \) is large enough. In order to detect if the true \( T \) is significantly positive, it is necessary to build an interval \( [a, \infty) \) where the hypothetical \( T \) value is placed with a determined probability. That is to say, the lower \( a \) are calculated such that the following probability is complied with:

\[
p(\hat{T} > a) = 1 - \alpha.
\]

Therefore, the test rule for checking \( H_0 \), with an asymptotic significance level \( \alpha \), is that the null hypothesis is rejected if \( a > 0 \). However, in order to obtain \( a \) it is necessary to know the distribution of the estimate for \( \hat{T} \). It is well known, nevertheless, that the asymptotic theory for determining such percentiles is not closed; therefore, resampling methods such as bootstrap introduced by Efron (1979) are widely used for this purpose.

The steps to obtain the value for \( a \) are as follows:

- Obtain \( \hat{T} \) from the sample data as explained above.
- For \( b = 1 \) to \( B \) (e.g., \( B = 1000 \)), simulate the bootstrap sample \( \{\left(X_i^b, Y_i^b\right)\}_{i=1}^n \) by randomly sampling the \( n \) items from the original dataset \( \{\left(X_i, Y_i\right)\}_{i=1}^n \) with replacement (i.e., each individual value \( (X_i, Y_i) \) has a probability \( n^{-1} \) of re-occurring) and obtain the bootstrap estimates \( \hat{T}^b \).

Finally, the value of \( a \) is given by \( a = \hat{T}^{\alpha/2} \) where \( \hat{T}^p \) represents the percentile \( p \) of the bootstrapped estimates \( \hat{T}^1, \ldots, \hat{T}^B \). The test rule based on \( T \) consists of rejecting the null hypothesis if \( a > 0 \). Applying this test to \( q = 1, \ldots, p - 1 \) is an important step in a covariate selection procedure. If \( H_0 \) is not rejected, only the subset of the \( q \) covariates \( X_{j_1}, \ldots, X_{j_q} \) that maximize \( \hat{\text{AUC}}(q) \) will be retained, with the remaining covariates eliminated from the model. In all other cases, the test will be repeated with \( q + 1 \) variables until the null hypothesis is not rejected. More details
RESULTS AND DISCUSSION

A plot of the AUC corresponding to all the possible model combinations (from 1 to 16 explanatory variables) is shown in Figure 2. In each subset, $q$ represents the number of variables included in the model. The evolving curve corresponding to the models with the highest AUC values is also presented (Table 2). Also included, along with the increases in the AUC obtained in response to rises in $q$, is the number of new variables included in the model in order to obtain this maximum value each time. The increases in the AUC values are plotted in Figure 3. Based on Table 2, it can be observed that if only one variable ($q = 1$) is selected, the best AUC is obtained for the variable $X_{10}$ (forested area). In this case, the area equals 0.716, which suggests acceptable discriminatory ability.

The AUC increases as the number of variables included in the model rises to a given $q$. Furthermore, it should be noted that, as new variables enter, the AUC continues to increase, although more gradually, as is evident from the $\Delta_{\text{AUC}}$ column in Table 2 and from Figure 3. This is indicative of the fact that, as the number of variables increases, the new variables included in the model represent a refined behaviour with respect to those that are already present. The result is that the improvements in the AUC value are increasingly subtle. Moreover, when $q > 11$, the value of the AUC is reduced.
Selecting Variables for Modeling Lightning Fire Risk

Table 2. AUC and increment in AUC ($\tilde{T}$) obtained with each selected model of size $q$.

<table>
<thead>
<tr>
<th>$q$</th>
<th>AUC</th>
<th>$\tilde{T}$</th>
<th>$X_1$</th>
<th>$X_2$</th>
<th>$X_3$</th>
<th>$X_4$</th>
<th>$X_5$</th>
<th>$X_6$</th>
<th>$X_7$</th>
<th>$X_8$</th>
<th>$X_9$</th>
<th>$X_{10}$</th>
<th>$X_{11}$</th>
<th>$X_{12}$</th>
<th>$X_{13}$</th>
<th>$X_{14}$</th>
<th>$X_{15}$</th>
<th>$X_{16}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.716</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.769</td>
<td>0.053</td>
<td></td>
<td>$x$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.794</td>
<td>0.025</td>
<td>$x$</td>
<td></td>
<td>$x$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.802</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.804</td>
<td>0.002</td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.807</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.810</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.811</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.812</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.814</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
</tr>
<tr>
<td>11</td>
<td>0.815</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.814</td>
<td>−0.001</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.815</td>
<td>−0.001</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.811</td>
<td>−0.002</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.810</td>
<td>−0.001</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.809</td>
<td>−0.001</td>
<td></td>
</tr>
</tbody>
</table>

For $q > 11$ (marked in bold), the AUC decreases.

From the analysis of the way in which the AUC evolves in response to the inclusion of new variables, it is possible to deduce that there is an optimal intermediate point between the number of variables that are considered in the model (preferably low) and the AUC value (preferably high). To delimit this point, the test for the

Figure 3. Value of $\tilde{T}$ (continuous line) and the corresponding limit $a$ (broken line) for the 95% confidence interval of $T$. (Color figure available online.)
null hypothesis $H_0(q)$ described in the Methods section was applied for each $q$. For a 5% significance level, the null hypothesis was rejected until $q = 3$ and accepted thereafter. Therefore, it can be concluded that the best subset of variables are $X_1$ (altitude), $X_{10}$ (forested area), and $X_{11}$ (number of strikes in coniferous woodland). The AUC for this model indicated acceptable discriminatory ability (area, 0.7942). For this case, the parameter estimates for the logistic GLM were $\alpha = -4.28$, $\alpha_1 = -0.00156$, $\alpha_{10} = 0.00404$, and $\alpha_{11} = 0.0528$. All the parameter estimates were significant at the 1% level.

The procedure outlined above serves to determine the number of variables to be included in the model. In addition, it ensures that the best choice of variables of size $q$. In practice, however, various statistically equivalent optimal models of size $q$ can be obtained. Taking into account the corresponding test for the null hypothesis $H_0(q)$, included in Table 3 are some models with $q = 3$ that are equivalent to the optimal model. Nine equivalent models can be obtained, all of them with very similar discriminatory ability (area, 0.7784–0.7888). Variables $X_1$, $X_{10}$, or $X_{11}$ are always included in the equivalent models and this combination has been chosen because it coincides with that obtained previously (Castedo-Dorado et al. 2011). Other combinations are possible, but the advantage of the proposed method is, in fact, that it is possible to choose the combination that is easiest to interpret.

According to the $\alpha_1$ parameter estimate, altitude ($X_1$ variable) had a negative effect on the probability of occurrence of lightning-induced fires; that is, lower and intermediate elevations were found to be the most prone to fire. Although several studies have shown a positive relationship between altitude and lightning occurrence (Dissing and Verbyla 2003)—even in the studied region (Rivas Soriano et al. 2001, 2005)—higher rainfall and lower temperatures at higher altitudes may cause a negative link (Martín and Means 1982; Díaz-Avalos et al. 2001). Moreover, the altitudinal ecological limit of woodlands may also be important (Dissing and Verbyla 2003). These outcomes suggest that lightning-induced fires occur at altitudes where fuel continuity and moisture are not limiting factors (Martín and Means 1982). Other authors have reported similar results for lightning-induced fires in other regions of Spain (Nieto et al. 2006).

Table 3. Models that are equivalent to the optimal with $q = 3$.

<table>
<thead>
<tr>
<th>AUC</th>
<th>$X_1$</th>
<th>$X_2$</th>
<th>$X_3$</th>
<th>$X_4$</th>
<th>$X_5$</th>
<th>$X_6$</th>
<th>$X_7$</th>
<th>$X_8$</th>
<th>$X_9$</th>
<th>$X_{10}$</th>
<th>$X_{11}$</th>
<th>$X_{12}$</th>
<th>$X_{13}$</th>
<th>$X_{14}$</th>
<th>$X_{15}$</th>
<th>$X_{16}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.42</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>78.88</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>78.64</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>78.21</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>77.98</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>77.97</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>77.96</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>77.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>77.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
According to Table 3, the other topographic variable tested ($X_2$, slope) was not found to be significant for any of the models equivalent to the optimal model. Similar results were found in other studies (McRae 1992 for Australia). However, Díaz-Avalos et al. (2001), Wierzchoski et al. (2002), and Conedera et al. (2006) found that lightning-induced fires mainly occurred on steeper slopes.

The presence of forested areas (variable $X_{10}$) was found to be significant both in the optimal model and in four of the nine equivalent models. It was positively associated with lightning-caused fire ignitions, confirming the results of Vázquez and Moreno (1998), who found that lightning-induced fires in Spain affected a greater proportion of woodlands than human-induced fires. This may be the result of the canopy sheltering the forest floor from rainfall associated with lightning (Kourtz and Todd 1992).

More surprising, perhaps, is the significance of the number of strikes in coniferous woodland (variable $X_{11}$) in most of the equivalent models, bearing in mind that this type of vegetation represents less than 25% of the woodland area in the province of León (Junta de Castilla y León 2005). This seems to confirm that some types of vegetation cover are more prone to lightning-induced fire than others (Manry and Knight 1986; Granstrom 1993; Dissing and Verbyla 2003; Krawchuk et al. 2006; Evett et al. 2008). The fact that variable $X_{11}$ is contained in almost all the optimal models is some indicator of its importance, although this has not been proved mathematically.

Lightning ignition may occur when the electrical current ignites fine fuels on the forest floor (usually duff) at the base of a tree (Latham and Williams 2001) or when living trees act as lightning conductors (Ogilvie 1989). Differences in duff layer, produced by differences in vegetation type, would also result in different rates of heating and therefore differences in flammability (Latham and Williams 2001). Duff layer of needles under conifers is a more suitable fire ignition source than the duff layer in a hardwood stand (Flannigan and Wotton 1991). Deciduous species decrease the duff depth and, consequently, the probability of ignition (Latham and Schlieter 1989).

In addition, the high flammability of coniferous species (due to their high resin and essential oil content) and the abundance of highly flammable species in the understory of the Pinus stands (Erica sp., Genistella tridentata, Calluna vulgaris, etc.) in the province of León may help fire propagation after ignition (Vélez 1990; Bond and Van Wilgen 1996).

The bootstrap methodology revealed no relationship between lightning density (variables $X_3$ and $X_7$) and the characteristics of lightning discharges (charge and intensity, variables $X_3$ and $X_6$), and fuel ignition. Regarding lightning density variables, the explanation is that higher densities of flashes are generally followed by greater rainfall (Rorig and Ferguson 1999; Rorig and Ferguson 2002; Álvarez-Lamata 2005). A similar result was found for Spain by Vázquez and Moreno (1993), suggesting that a very large number of lightning strikes is needed for several ignitions to take place.

The resulting map of the probability of occurrence of lightning-induced fires for the period 2002–2007 is shown in Figure 4. Probability estimates were obtained from the optimal model since it had the best discriminatory capacity. The highest probability of fire is at intermediate altitude in the province where coniferous
woodlands are the dominant type of land cover. Comparing Figures 1B and 4, it can be observed that there is general agreement regarding the most lightning-induced prone areas. The overestimation is probably due to the fact that the number of pixels where lightning fires do not occur is much greater than the percentage of pixels where lightning fires do occur. In fact, in a previous analysis of the data using logistic regression and automatic selection procedures for the independent variables (Castedo-Dorado et al. 2011), the percentage of pixels where a lightning-caused fire can be expected is also over-predicted. However, it must be borne in mind that errors resulting in overestimation of the number of pixels in relation to fire occurrence are of much less important than errors resulting in underestimation.

CONCLUSIONS

We used ROC analysis based on the logistic GLM for binary responses to determine the number of covariates $q$ and select the best subsets of size $q$ that would establish the model with best discriminatory capacity for estimating lightning-induced fire occurrence for a case study of León province in northwest Spain. Of the 16 variables initially considered, only three were necessary to obtain an optimal model, based on altitude, forested area and the number of strikes in coniferous woodland as independent variables. The AUC for this model indicated acceptable discriminatory ability (area, 0.7942). This optimal model can be considered equivalent to another nine models with three covariates. This is very interesting from a practical point of view, because it models enables models to be generated that include variables of interest (i.e., easy to measure, easy to obtain accurately, etc).
Selecting Variables for Modeling Lightning Fire Risk

This statistical methodology can be usefully applied to the spatially explicit assessment of fire risk, for combination with models such as FARSITE (Finney 1998), to plan and coordinate efforts to identify areas at greatest risk and to design long-term wildfire management strategies. In addition, both the optimal and equivalent models can easily be integrated with other sources of risk (e.g., socioeconomic causes) in operational wildfire risk systems, within geographic information systems.

The proposed method is time consuming to apply but is easily automated, as the same model is used for different combinations of independent variables. The methodology used for this case study can be applied to other wildfire risk assessment situations where multiple and interconnected covariates are available. Studies can also be carried out at different spatial scales.

Future research will cover the application of a spatial regression logistic model to solving the same problem so as to take into account possible spatially correlated variables.

ACKNOWLEDGMENTS

The Spanish meteorology agency, AEMET, provided the lightning strike and meteorological data. This research was supported by funding provided by the Diputación de León for the project titled “Modelización de la probabilidad espacial y temporal de ocurrencia de incendios forestales por rayo en la provincia de León.”

REFERENCES


Junta de Castilla y León. 2005. Castilla y León crece con el bosque. Consejería de Medio Ambiente, Junta de Castilla y León, Serie Divulgativa


Martín RE, and Means JE. 1982. Fire History and Its Role In Succession. Forest Succession andStand Development Research in the Northwest. Oregon State University, Forest Research Laboratory, Corvallis, OR, USA


Selecting Variables for Modeling Lightning Fire Risk

Spanish Ministry of the Environment. 2003. Mapa Forestal de España, escala 1:50.000 (MFE50) de la provincia de León. Organismo Autónomo Parques Nacionales, Madrid, Spain