

# SCAVENGING OF AEROSOL PARTICLES BY RAIN IN LEON (SPAIN)





CARLOS BLANCO-ALEGRE<sup>1</sup>, AMAYA CASTRO<sup>1</sup>, ANA CALVO<sup>1</sup>, ELISABETH ALONSO-BLANCO<sup>2</sup>, DELIA FERNÁNDEZ-GONZÁLEZ<sup>3</sup>, ROSA MARÍA VALENCIA-BARRERA<sup>3</sup>, ANA MARÍA VEGA-MARAY<sup>3</sup>, SANTIAGO DE CASTRO-ALFAGEME<sup>3</sup>, ROBERTO FRAILE<sup>1</sup>

<sup>1</sup>Department of Physics, IMARENAB University of León, 24071 León, Spain <sup>2</sup>Centro de Investigaciones Energéticas, Tecnológicas y Ambientales (CIEMAT), 28040 Madrid, Spain <sup>3</sup>Biodiversity and Environmental Management, University of León, 24071 León, Spain rfral@unileon.es

## INTRODUCTION

Wet scavenging is usually divided into swept into the cloud (in-cloud scavenging, ICS) and swept under the cloud (below-cloud scavenging, BCS). In this study only considers BCS. In general, to evaluate BCS used  $\lambda$  parameter. BCS is not as efficient in all sizes of aerosol particles, for example in the "Greenfield Gap" (0.3-1 mm) washing usually less. Therefore, it is analyzed the evolution of  $\lambda$  parameter in "Greenfield Gap" and it were to analyze the variation in the concentration of particles as a function of rain.

Laser disdrometer

Thies LPM

Registered drops with

diameters between 0.125

and 8 mm in 20 channels

## STUDY AREA

Data were collected from July to the end of October 2015, at the university campus of León, Spain (42° 36′ 50″ N, 5° 33′ 38″ W, 846 m asl).



FIG. 1. LOCATION OF LEÓN, IN SPAIN.

### METHODOLOGY

#### SAMPLING

Optical particle counter (PCASP-X)



Registered aerosol particles with diameters between 0.1-10 µm in 31 channels

Davis Weather Monitor II Station



Continuously registering the temperature and humidity

### RESULTS and CONCLUSIONS

• Gamma and lognormal distributions were used for characterising raindrop and aerosol size distributions, respectively.

**TABLE. 1.** SUMMARY OF RAIN'S EPISODES OCCURRING.

|  |      | INTENSITY | DURATION | PRECIPITATION |  |
|--|------|-----------|----------|---------------|--|
|  |      | (mm/h)    | (min)    | (mm)          |  |
|  | MIN  | 0.20      | 28       | 0.4           |  |
|  | MAX  | 5.75      | 1232     | 32.7          |  |
|  | MEAN | 1.31      | 231      | 4.1           |  |

**TABLE. 2.** SUMMARY OF EVOLUTION OF PARTICLE'S NUMBER, BEFORE. DURING AND AFTER RAIN.

|      | BEI GRE, BORRING IN VERY I BRITAIN VI |              |              |           |                |           |  |  |
|------|---------------------------------------|--------------|--------------|-----------|----------------|-----------|--|--|
|      | (part./                               | (part./      | (part./      | Variation | Variation      | Variation |  |  |
|      | $cm^3$ )                              | $cm^3$ )     | $cm^3$ )     | BEFORE-   | <b>DURING-</b> | BEFORE-   |  |  |
|      | BEFORE                                | DURING       | <b>AFTER</b> | DURING    | <b>AFTER</b>   | AFTER     |  |  |
|      |                                       |              |              | (%)       | (%)            | (%)       |  |  |
| MIN  | 31 ± 13                               | $32 \pm 7$   | $10 \pm 4$   | 25        | 31             | 30        |  |  |
| MAX  | 406 ± 20                              | $370 \pm 35$ | $393 \pm 76$ | -58       | -76            | -70       |  |  |
| MEAN | 174 ± 18                              | 146 ± 25     | 130 ± 14     | -16       | -15            | -25       |  |  |



**FIG. 2.** Evolution minute to minute of total number of particles per unit volume (vertical red lines) and evolution of precipitation (line blue) in one rain event.





**FIG. 2.** Evolution minute to minute of scavenging parameter ( $\lambda$ ) (red line) and evolution of precipitation (line blue). In black the trend of  $\lambda$ . Positive values indicate effective washing in one rain event.. A) Particles under 0,3 µm. B) Particles between 0,3-1 µm ("Greenfield Gap").



**FIG. 3.** Evolution minute to minute of scavenging parameter ( $\lambda$ ) (red line) and evolution of precipitation (line blue). In black the trend of  $\lambda$ . Positive values indicate effective washing in one rain event.



**FIG. 4.** Distribution of aerosol particles before precipitation (blue), during rain (red) and after rain (green).

- Pearson correlations statistically significant negative between:
  - Precipitation and total particles number (r=-0.53; p>0.001).
  - Precipitation and total particles mass (r=-0.54; p>0.001)
  - Drops (between 0.125 and 2.5 mm) and particles number (between 0.1 ad 0.42  $\mu$ m)(p>0.001)
- Precipitation produce effective washing effect on aerosol particles in the atmosphere, with decreases in the number of particles present before and during rain of 15%, and before and after rain 25%.

# BIBLIOGRAPHY

- Chate, D. M., Murugavel, P., Ali, K., Tiwari, S. & Beig, G., 2011. Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models. Atmospheric Research, 99(3-4), 528-536.
- Greenfield, S.M., 1957. Rain scavenging of radioactive particulate matter from the atmosphere. Journal of Meteorology.
- Sportisse, B., 2007. A review of parameterizations for modeling dry deposition and scavenging of radionuclides, 41, 2683-2698.

#### ACKNOWLEDGEMENTS