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Furthermore, monthly evolution of density and
refractive index of aerosols were also studied.
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The imaginary part of the refractive index in
summer months varies between 0.006 and
0.008, that means that the aerosols present have
the capacity to absorb the radiation (Table 1).

Saharan dust intrusions increase the
number of particles, promoting higher
values of the optical parameters in summer

(Alonso-Blanco et al.,, 2018) (Fig. 5).

The increase in traffic, the use of heating devices and the
reduction in the mixing layer thickness promote high
PM;, concentrations in the winter months (Table 2).

respectively (Fig. 5).
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