

THE 16TH CONFERENCE OF THE INTERNATIONAL SOCIETY OF INDOOR AIR QUALITY & CLIMATE

Creative & Smart Solutions for Better Built Environments

VIRTUAL CONFERENCE

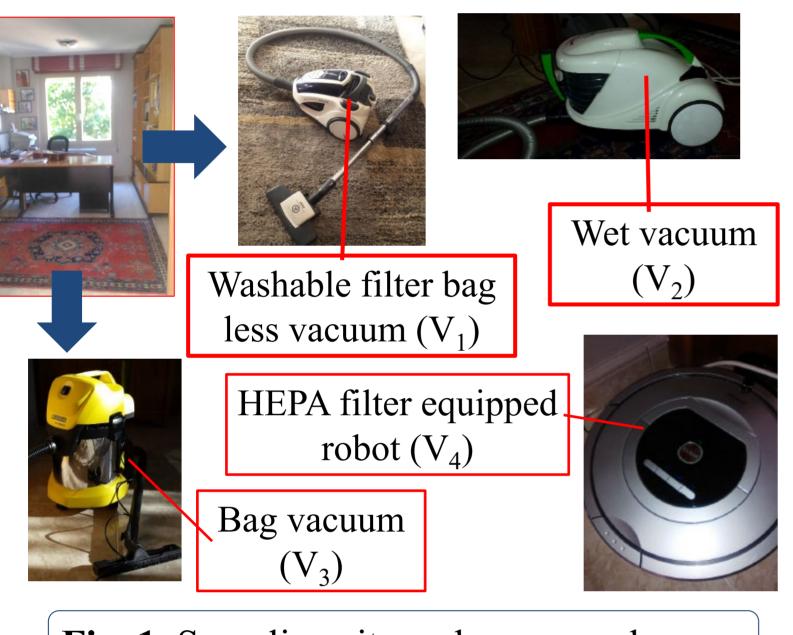
Indoor vacuum cleaner emissions: particle size distributions and health impact

Fernanda Oduber¹, Estela D. Vicente², Carlos Blanco-Alegre¹, Ana I. Calvo¹, Amaya Castro¹, Célia Alves²*, Roberto Fraile¹, Ester Coz³, Andre S.H. Prevot⁴

¹ Department of Physics, IMARENAB University of León, León, Spain.

²Centre for Environmental and Marine Studies (CESAM), Department of Environment, University of Aveiro, Aveiro, Portugal.
 ³Centre for Energy, Environment and Technology Research (CIEMAT), Department of the Environment, Madrid, Spain
 ⁴Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland

1. Introduction


Vacuuming can be considered as an essential cleaning activity in households. However, during this domestic work, resuspension of particles may occur. Household dust may come from indoor and/or outdoor sources. Dust is a complex mixture of particles that may contain toxic, carcinogenic or allergic components. Several studies have shown that dust particles can penetrate the respiratory tract and adversely affect the health of those present. The objective of this study is to determine the size distribution of resuspended particles during vacuum cleaning in a living room of a house, located in a suburban area of León (Spain).

2. Materials/Methods

The measurements were made in a house living room, Following the standard ISO, 1995, the aerosol size fractions

with closed door-window conditions using four vacuum cleaners during about 45 min each

deposited in respiratory tract regions (inhalable, thoracic, tracheobronchial and respirable) were estimated

Fig. 1. Sampling site and vacuum cleaners

3. Results and Discussion

There is an increase in the particle number concentration during cleaning with the four vacuum cleaners and a decrease in the concentration of particles in the accumulation mode ($N_{>100 \text{ nm}}$) compared to the value obtained before cleaning (Table 1).

Table 1. Maximum particle concentration registered for

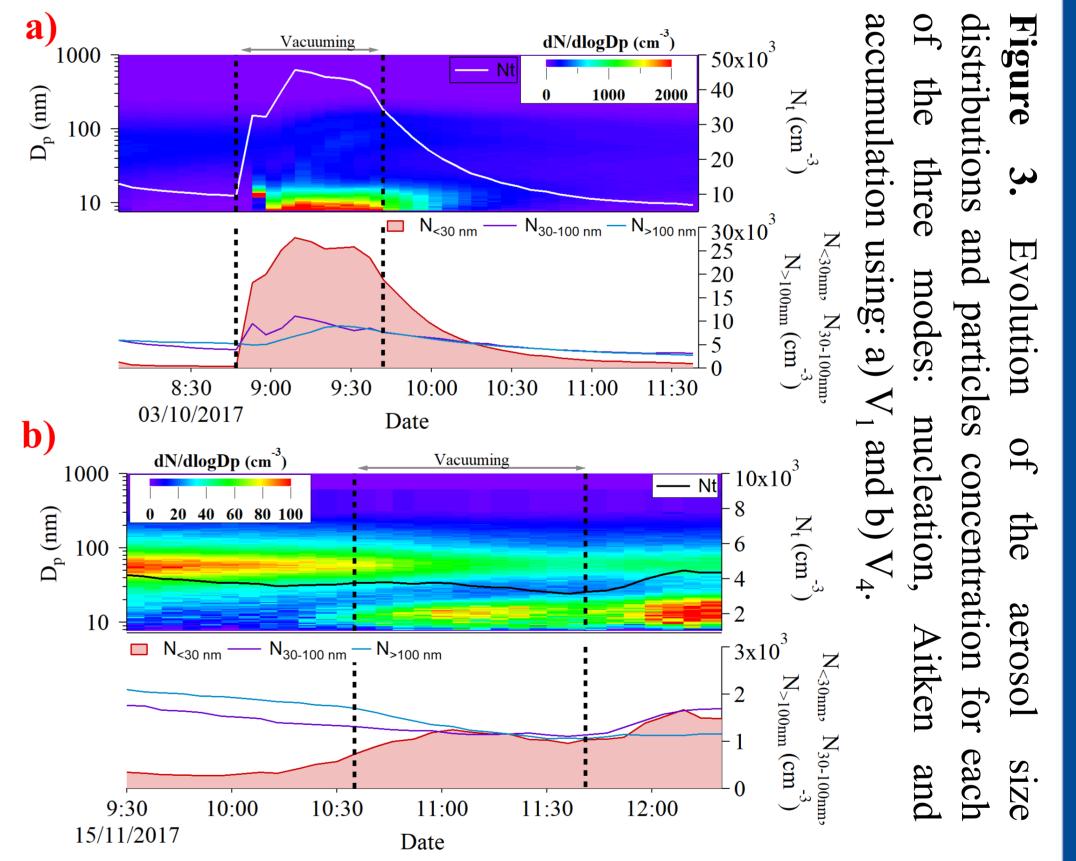


Fig. 2. Sampling instruments

Particle size distributions were measured using: i) a PCASP-X in a range between 0.1 and 10 μ m; ii) a SMPS for the submicrometer particles ranging from 8 to 310 nm

iii) The aerosol light-attenuation at seven wavelengths was continuously measured with an Aethalometer model AE31

the total distribution (Nt) and for each of the three modes: nucleation, Aitken and accumulation (in particles cm^{-3}) and variation of the particle number concentration before and during vacuuming (Δ_N) in %.

		\mathbf{V}_{1}	V ₂	V ₃	$\mathbf{V_4}$
NI¢	Max	45,774	65,789	106,576	7,349*
Nt	$\Delta_{ m N}$	274	1647	163	-21
N _{<30nm}	Max	27,838	54,253	74,922	1,676**
	$\Delta_{ m N}$	4,148	7,753	384	116
NT	Max	11,091	11,057	37,045*	$3,107^{*}$
N _{30-100nm}	$\Delta_{ m N}$	93	347	44	-37
NI	Max	8,998	554	3,263*	$2,778^{*}$
¹ N>100nm	$\Delta_{ m N}$	28	-17	-19	-40

*Value obtaining before vacuuming (considered between 10 min and 1 hour before vacuuming). **Value obtaining after vacuuming (considered between 30 min and 1 hour after vacuuming).

The concentration of black carbon (BC) increases during vacuum cleaning activity (80- 200%), except for V_4 , where the BC concentration decreases by 17%.

The maximum particle concentrations were recorded for $N_{<30nm}$ particles during vacuum cleaner, except for the V_4 , which shows the maximum after it (Fig. 3a and 3b).

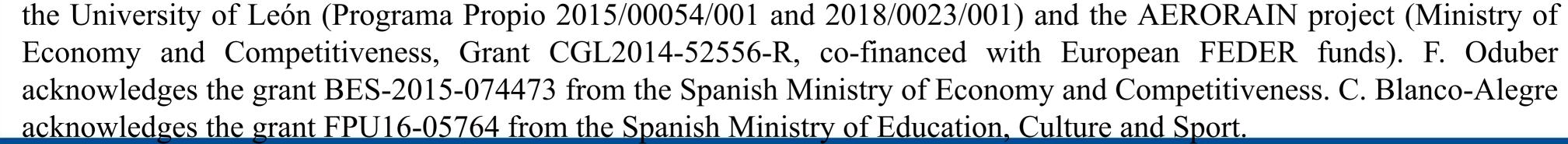

5. Acknowledgement

Table 2. % of particles that could reach the respirable regions

Fraction	% of particles	
Inhalable	99	
Tracheobronchial (healthy adults)	1-4	
Respirable	90-95	

The concentration of particles emitted from vacuuming equipment can be high during the vacuuming process, affecting the mass fraction of the particles deposited in the respiratory regions (Table 2). However, the levels of particles emitted during the process can be reduced by using vacuum cleaners equipped with HEPA filters.

This study was partially supported by the Spanish Ministry of Economy and Competitiveness (Grant TEC2014-57821-R),

