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The probability of fire in a particular area depends on a range of environmental and geographic variables.
Fire prevention planning can be assisted by the construction of models to identify the variables that have
a significant influence on the occurrence of fires and by building maps showing the spatial probability
distribution for fires occurring in specific geographic areas. We used generalized spatial linear models to
predict spatially distributed probabilities for fire occurrence in locations where storms featuring light-

ning occurred, on the basis of a set of variables related to climatology, orography, vegetation and
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lightning characteristics, and to assess the relative importance of these variables. A comparison of this
model with simple logistic regression models used by other researchers to resolve similar problems
demonstrates the importance of bearing in mind spatial correlation between variables.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Lightning is the main natural cause of ignition in woodlands all
over the world (Pyne et al., 1996) and is even the main cause of
ignition, whether natural or otherwise, in boreal forests (Johnson,
1992). In Spain and other Mediterranean countries fires caused by
humans are, by far, the most common kind of fire (Vazquez and
Moreno, 1998; Loepfe et al., 2011) and this is probably the reason
why not much attention has been paid to forest fires caused by
lightning. Nonetheless, lightning-caused fires can burn larger areas
of forest than human-caused fires because of remoteness and
aggregation in time and space (Podur et al., 2003).

The probability of fire depends on a range of environmental and
geographic variables. Diaz-Avalos et al. (2001) have indicated that
topographic variables such as terrain altitude, gradient and orien-
tation have a bearing on the probability of ignition. The type of
vegetation is another factor that affects ignition (Dissing and
Verbyla, 2003). Dlamini (2008) used a Bayesian belief network to
predict wildfire from variables such as land cover, temperature,
elevation, rainfall, aspect, slope, among others. Land cover,
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elevation, and climate (mean annual rainfall and mean annual
temperature) were found to be strong predictors of wildfire
occurrence, while aspect had the least influence on the wildfire
occurrence.

Lightning characteristics (frequency of strikes, polarity, multi-
plicity, etc.) also affect the occurrence of fires in wooded areas
(Flannigan and Wotton, 1991). Weather characteristics such as
rainfall, relative humidity and temperature are other factors that
have a bearing on ignition (Hely et al., 2001). Most of the variables
that affect the occurrence of lightning-ignited fires are spatially
correlated; consequently, the application of models reflecting the
spatial component is likely to improve not only interpretation of
the influence of known variables but also the prediction of the
probability of a fire. However, most research into wildfire predic-
tion relies on models that fail to take into account the spatial nature
of the explanatory variables (Martell et al., 1989; Vega-Garcia et al.,
1995; Perestrello de Vasconcelos et al., 2001; Wotton and Martell,
2005; Catry et al., 2008; Martinez et al., 2009).

In this article we analyze the applicability of model-based
geostatistics to assessing the probability of fires using the gener-
alized linear spatial model (GLSM). The term ‘model-based geo-
statistics’ was coined by Diggle et al. (1998), who extended this
geostatistical approach to situations in which stochastic variation in
the data is known to be non-Gaussian. These authors described an
approach to geostatistical problems based on formal statistical
models and inferential procedures. Other authors that have studied
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this model are Diggle et al. (1998), Christensen and Waagepetersen
(2002); Diggle et al. (2002, 2003); and Zhang (2002, 2003).
Christensen (2004) described algorithms for estimating the
parameters involved in the GLSM using Markov-chain Monte Carlo
(MCMC).

The article is laid out as follows: Section 2 provides a brief
description of the GLSM and other statistical methods used in our
research; Section 3 describes the study data and the formulated
model; Section 4 covers the statistical results and analyses; finally,
Section 5 contains our conclusions.

2. Statistical analysis methods
2.1. Generalized linear spatial models

The notion of the generalized linear model (GLM) was developed by Nelder and
Wedderburn (1972) and discussed in detail in McCullagh and Nelder (1983). In the
GLM, the response variables Yy, Yo, ... Y, are assumed to be mutually independent,
with expectation related to a linear predictor E [Y] = g~! (dTB), where § € %P is
a vector of unknown regression parameters, d are known dependent covariates and
g is a known function called the link function. The link function relates the linear
predictor and the mean of the distribution function. Many different link functions
are available, but one should be chosen that matches the domain of the link function
to the range of the distribution function mean. Thus, if the response variable follows
a normal distribution, identity is typically used as the link function: E [Y] = d’g. For
Poisson distributions, g is the In function, hence

g(EIY)) = In(E[Y)) = d"6: E[Y] = exp(d") (1)
The logit function is usually used for binomial distributions:

E[Y]

T
g(ElY) = 1n(1_5m) _ dp; By = —SPH)

1+ exp(d’p)

An important extension of the GLM is the generalized linear mixed model
(GLMM) (Breslow and Clayton, 1993), in which the response variables are assumed
to be mutually independent conditionally on the realized values of a set of latent
variables. The GLSM (Diggle and Ribeiro, 2007) is a GLMM in which the latent
variables are derived from a spatial process. This leads to the following model
specification:

Consider n distinct locations {xy, ... x;} © I c %% and suppose we observe
arealization y = (y1, ... yn) of Y = (Y3, ... Yp)', where Y; = Y(x;). Let S = {S (x): x € I},
denote a Gaussian random field with mean function E [S (x)] = d (x)' # and
covariance cov (S (x), S(x')) = ozp x, x'; 0) + 721 {x = x'}, where § € %P is, as in the
GLM, a vector of unknown regression parameters, d(x) are known location-
dependent covariates, p (x, X'; ¢) is a correlation function in ®% ¢ is a scale
parameter directly related to the range of the correlation function that indicates the
distances from which the spatial correlation can be considered null, and >0
represents what is called the nugget effect in the geostatistical context.

The Gaussian process S (x) can be understood as the residual spatial process
remaining after eliminating from the response variable Y (x) the effect of the
explanatory variables. Thus, for a fixed x € I the one-dimensional variable [Y (x)|S]
has a distribution that only depends on the conditional mean E [Y (x)|S (xi)].
Moreover, the response variable {Y (x), x e I}, conditionally on the random field, S, is
formed of random, mutually independent variables. Finally, S (x) and the conditional
mean are related by means of a known link function in such a way that E [Y (x;)|S
(x)] = g1 (S (x;)), where g is, as in the GLM, the link function.

We assume that the errors follow a binomial distribution. This kind of distri-
bution has been previously used by Zhang (2002) and Diggle et al. (2002). A class of
transformations that could be used as link functions for this distribution was
described by De Oliveira et al. (1997).

In interpreting the regression parameters § of the GLSM, it should be remem-
bered that a direct interpretation of these coefficients is only possible when the link
function is identity and the error distribution Y (x)|S is Gaussian. In the remaining
cases, the parameters § have a conditional and non-marginal interpretation. See, for
example, Diggle et al. (1994) for further details.

Since it is not possible to directly observe the process S (x,) we cannot obtain
a closed expression for the likelihood function from which to estimate the param-
eters. The implementation of algorithms based on MCMC, as suggested by Diggle
et al. (1998), enables the parameters for the GLSM to be approximated within
a Bayesian framework with vague priors. MCMC covers a range of simulation
methods that are particularly useful for simulating observations from multivariate
distributions or distributions whose density function is analytically complicated, as
occurs with the likelihood function in the GLSM. These methods are based on
establishing a Markov chain with the multivariate distribution of interest as the
equilibrium distribution, in such a way that the probabilities of transition of the
chain are analytically manageable. By performing a sufficiently large number of

(2)

Markov chain iterations—called burn-in—we obtain a realization of the equilibrium
distribution of interest. Continuing with the iterations, we can obtain a sample that
is almost independent of the distribution, provided that the realizations of this
sample are separated by a sufficiently large number of Markov chain iterations. The
analysis described in this article is based on the work of Christensen (2004) and was
performed using the geoRglm package that is freely available within the framework
of the open-source R statistical system (R Development Core Team, 2010).

2.2. Model fit evaluation: ROC curves

A binary classification system can be used to calculate receiver operating char-
acteristic (ROC) curves and determine the precision of a diagnostic test. ROC curves
represent true positive versus false positive ratios for different values of the
discrimination threshold (Zhou et al., 2002). By calculating the area under the ROC
curve (AUC) associated with a binary classifier, we can compare models and select
explanatory variables to be included in the model. This approach was used by
Rodriguez-Alvarez et al. (2010), who described a bootstrap-based method for testing
for a significant factor effect on the ROC curve. ROC curves can therefore be used to
select an optimal model from among several GLMs with a binomial error distribu-
tion. The AUC can also be used to calculate the goodness-of-fit of the GLSM
compared to similar models without a spatial component (i.e., GLMs).

3. Data description and model formulation
3.1. The study area and the geographic database

The study area, located in the province of Leon in northwest
Spain (Fig. 1), measured 15,590 km?. It was divided into cells
measuring 3 x 3 km, resulting in a total of 1882 cells. The cell size
was chosen on the basis of accuracy in the locations of the ignition
and on the assumption that weather and fuel conditions would be
homogeneous within a cell.

Data on the ignition locations (approximate UTM coordinates)
for the years 2002 — 2007 were supplied by the Spanish Ministry of
the Environment. The 1882 cells into which the province of Leon
was divided were coded for occurrence of lightning-caused igni-
tions during the study period: O for non-occurrence and 1 for
occurrence. Only major fires, i.e. those requiring intervention, were
considered.

Lightning locations and data on intensity, polarity and date of
occurrence were provided by the Spanish Meteorology Agency. A
total of 78,256 flashes were recorded; fewer than 5% had negative
polarity.

Topographic variables such as average slope, altitude and aspect
were obtained from a digital elevation model with a pixel resolu-
tion of 50 m, obtained from the Spanish.

Fig. 1. Location of the study area: province of Leon (Spain).
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Cartographic Database using the ArcGIS 9.2 spatial analysis
module, a computer program developed by ESRI (Environmental
System Research Institute). Data on land cover was obtained from
the forestry map for 2003 for the province of Leon, supplied by the
Spanish Ministry of the Environment. The different types of land
cover were categorized in 7 classes.

Daily meteorological data for each cell were derived from raw
data collected at 344 weather stations located in Leon and nearby
provinces. The data, provided by the Spanish Meteorology Agency,
consisted of daily observations of temperature, relative humidity
and rainfall. Rainfall and relative humidity for each 3 x 3 km cell
were estimated using universal kriging. Temperature for each cell
was estimated by cokriging interpolation, with elevation used as
a secondary variable given that it is highly correlated with
temperature.

Spanish Meteorology Agency data were considered error free
since this agency does not provide any additional information
concerning the quality of the data. This is obviously a problem
when estimating the goodness of the results. This problem
becomes worse in the case of the variables estimated using kriging
because observation errors are propagated in the interpolation
process. A possible solution would be to perform a sensitivity
analysis (Yang, 2011) assuming that the explanatory variables have
associated some kind of uncertainty which can be model using
random distribution functions. However, this is not affordable from
a computational point of view given the time required to run the
algorithm each time.

Kriging interpolation has been carried out in a classic way but in
future research it will be done using a hierarchical spatial model
(Banerjee et al., 2004). In this model, the spatial error component is
added to the media, leaving in the covariance matrix the residual
error (nugget).

3.2. Model formulation

The response variable, namely, the occurrence of fire, follows
a binomial distribution with a spatial dependence structure that
can be modeled using a GLSM. According to this model, it is
assumed that conditionally on a stationary Gaussian process, S (x),
the response variables Y;, I = 1, ... n, are modeled as independent
binomial variables. The parameters involved in this binary GLSM
are f = (¢2, ¢, 1%, ), with 8 = (Bo, ... Bp), where B is the intercept
and f4, ... B, are the regression coefficient corresponding to the i
variables or factors.

It is assumed that S (.) is a stationary Gaussian process that
determines the spatial variation of the probability of a fire occur-
ring in a specific location x, in such away that P(x) = E[Y (x)|S (x)]. A
logit function was used as the link function, as this kind of function
is typical in binary GLSMs, as it establishes a relationship between
S (x) and the conditional mean P (x); thus:

#(P) = In( 2 prs) = S0 3)

To infer the parameters of the model we implemented a method
based on MCMC. Within the Bayesian framework it can be
considered that the vector of parameters, 6, is conditionally inde-
pendent of Y given S. Considering a realizationy = (y1, ... yn)! of (Y3,

Y,)%, the likelihood function to be maximized is as follows:

L) = 010 = [soisei ds = [TEIED 7y
f.s)
FISFl) - H[rs) "G,
g | [f( } Z Fegy

where f(y,s) = f(y|s)f( ), f(s) = f(s]fg), 0o is a vector of initial
parameters and f(s|y) «<f (y|s)f (s) and E[-|y] denote expectation with

respect to f(-|y).
Briefly, the algorithm functions as follows:

1. Select an initial value for . If S = 0 is assumed in this first
step, the parameters estimated for the GLM can be used as
fo.

2. Obtain values for s© (1), ... s©© (m), sampled by an MCMC
from the distribution f(-|y). The initial K samples are dis-
carded as burn-in until it is judged that the equilibrium
distribution of interest has been achieved. The subsequent
realizations are used to obtain the s(© (j). Furthermore,
to build a sample that is almost independent of the
distribution, rather than storing the first m samples of
the simulated chain, each sample is taken at every Lth
iteration.

3. Select the §; that maximizes the following function:

Lm(e) = = 1f( (]))

4. Repeat steps 2 and 3 until ;=0 4.

The likelihood function L () can be approximated by using
the MCMC to simulate samples from f(-|y), departing from an
initial fy. The estimator for # will be that which maximizes this
approximation.

4. Results and discussion

Table 1 summarizes all the variables considered in regard to the
construction of the model. The large number of explanatory vari-
ables considered prioritized finding a GLM with a high goodness-
of-fit using a reduced subset of factors.

Taking the occurrence of fire as the response variable, binary
GLM models were fitted to different groups of explanatory

Table 1

Explanatory variables observed in the studied area.
Category Variable
Topography Mean altitude (m)

Mean slope (%)

Mean aspect (degrees)

Percentage of woodland

Percentage of scrubland

Percentage of coniferous woodland
Percentage of broadleaf woodland
Percentage of mixed woodland
Percentage of open woodland
Percentage of forested areas

Number of positive strikes

Number of negative strikes

Mean intensity of positive strikes (kA)
Mean intensity of negative strikes (KA)
Number of dry-storm days

Number of lower-than-average moisture days
Number of lower-than-average-temperature days
% of strikes in woodland

% of strikes in scrubland

% of strikes in coniferous woodland

% of strikes in broadleaf woodland

% of strikes in mixed woodland

% of strikes in open woodland

% of strikes in forested areas

Vegetation cover

Lightning

Meteorology

Lightning-vegetation
cover interaction
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Fig. 2. ROC curves and AUC values for the binary GLM fitted for a single explanatory
variable.

variables to locate the minimum number of variables providing
a high AUC value. Given the correlation between the explanatory
variables, the solution to this problem was not a single subset of
factors; rather, several combinations of factors obtained similar
AUC values. Finally, only 6 explanatory variables those with an
AUC above 0.5 were considered, variables that were highly
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Fig. 3. ROC curve and AUC value for the GLM fitted for 6 explanatory variables.

Table 2
Estimated coefficients and 2.5% and 97.5% quantiles for the GLM model.

Coefficient 2.5% quantile 97.5% quantile

Bo (intercept) —2.624 —4.699 —1.381

61 (agriculture land) 1.577E-05 —1.34E-03 2.45E-03

B> (dry-storm days) 1.013E-01 5.21E-02 1.68E-01

85 (mean altitude) —1.924E-03 —2.47E-03 ~1.29E-03

04 (positive strike) 1.816E-02 —1.28E-01 1.44E-01

85 (woodland area) 2.799E-03 1.42E-03 5.18E-03

Be (broadleaf wood) 9.906E-03 —3.20E-03 2.24E-02

correlated with these 6 variables were discarded. These variables
were:

—

. Percentage of agricultural land.

. Number of dry-storm days (days with accumulated rainfall
below 2.5 mm).

. Mean altitude of the cell (m).

. Number of positive strikes in the cell.

. Percentage of woodland.

. Number of strikes in broadleaf woodland.

N

U AW

Fig. 2 shows the ROC curves and corresponding AUC values for
the binary GLM fitted for a single explanatory variable; Fig. 3
includes the ROC curve and AUC value of 0.73 for the GLM fitted
for the 6 variables referred to above.

Once the explanatory variables were selected, a binary non-
spatial GLM model was fitted using Bayesian methods and the
MCMClogit function from the MCMCpack (R language). Table 2
shows the estimated coefficients, and the 2.5% and 97.5%
quantiles for the fitted model. It can be observed that, for
a significance level of « = 0.05, only 3 variables are significant:
number of dry-storm days, mean altitude and percentage of
woodland area.

Bearing in mid the special nature of the variables, a GLSM
was fitted keeping the 5 explanatory variables. The correlation
function considered was of the type cov (S (x), S (x')) = ¢2p (X, X';
0) + 11 {x = x'}, with p (x, X'; ¢) = exp (—//x—x'|/|p) as the
isotropic exponential model. The fit was performed using
Bayesian inference implemented via MCMC algorithms. First, it
is necessary to define options for the simulation of the samples
using the MCMC algorithm. The first 10,000 samples, where
convergence was judged to have occurred, were discarded, and
all the subsequent samples were used to obtain the posterior
distributions of the parameters of interest. To avoid bias, not
every observation for the MCMC algorithm was taken into
account, but the chain was sampled for each 100th iteration of
50,000 iterations, yielding a sample of 500 values (see
Christensen (2004) for more details). Subsequently, we used the
binom.krige.bayes function of the geoRglm package to obtain
the parameters that maximize the likelihood approximation to
function given in Equation (5).

Table 3
Estimated coefficients and 2.5% and 97.5% quantiles for the GLSM model.

Coefficient 2.5% quantile 97.5% quantile

Bo (intercept) -3.336 —5.725 -1.435

61 (agriculture land) 5.858E-04 —1.80E-03 2.90E-03

B2 (dry-storm days) 1.111E-01 3.79E-02 1.88E-01

65 (mean altitude) —2.352E-03 —3.58E-03 —1.31E-03

B4 (positive strike) 4.742E-02 —1.04E-01 1.95E-01

05 (woodland area) 3.443E-03 1.12E-03 5.59E-03

Be (broadleaf wood) 8.460E-03 —1.18E-02 2.64E-02
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Fig. 4. Density plots for the bi coefficients estimated using the GLM (unbroken line) and the GLSM (broken line).

The estimated parameters were as follows: ¢ = 6490, o> = 0.173,
2 = 0.732 and 8 = (—3.336, 5.858e-04, 1.111e-01, —2.352e-03,
4.742e-02, 3.443e-03, 8.460e-03).

It is important to remember that § has a conditional rather than
a marginal interpretation; furthermore, since the estimation
approaches are essentially different, a direct comparison of the
spatial and non-spatial GLM is not recommended.

Table 3 shows the values for the coefficients estimated for the
GLSM and the 2.5% and 97.5% quantiles. Comparing Tables 2 and 3 it
can be observed that, for a significance level of « = 0.05, the same
significant variables are maintained in the 2 models, namely,
number of dry-storm days, mean altitude and percentage of
woodland area.

In Fig. 4 we overplotted the density plots for the coefficients
estimated using GLM and GLSM. It can be observed that the
inclusion of the spatial component in the GLSM method seems
to have little influence on the distribution of most of the
coefficients.

The ROC curve and AUC value were calculated for the GLSM.
The AUC value for the spatial binary model was 0.99, indicating
a substantial improvement in precision for the GLSM. This
improvement is reflected in Fig. 5, which shows ROC curves
and the corresponding AUC values for the binary GLM and
GLSM.

Fig. 6 shows the fire probability map obtained using the GLSM.
The highest probabilities can be observed to occur in the east and
north of the province.

Referring to the sign and significance of the coefficients for each
explanatory variable obtained in the GLM and GLSM, it can be
deduced from the data in Table 2 and Table 3 that altitude plays
a negative role in the probability of lightning igniting a fire. This
contrasts with the results obtained by other authors (Rivas et al.,
2005). The other topographic variables considered were not asso-
ciated with the occurrence of fires. The presence of wooded areas
was positively related to fire occurrence in both models. This
corroborates the results obtained by other researchers (Vazquez
and Moreno, 1998).

The number of dry-storm days, significant in both models,
was another variable that favored the occurrence of fire. This
result corroborates those of other authors (Rorig et al., 2007).

The explanation is likely to be that the occurrence of storms
on low-rainfall days favors the occurrence and propagation of
fires.

The presence of positive lightning strikes or of strikes in
broadleaf woodland was not significant in either of the models.
This contrasts with the hypothesis of authors such as
Latham and Williams (2001), who consider that the presence
of fine fuels, such as dead leaves, on the forest floor favor
ignition.
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Fig. 5. ROC curves and corresponding AUC values for the binary GLM and
GLSM.
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Fig. 6. Locations of fires (left) and fire probability map for lightning-caused fires in the province of Leon in Spain (right).

5. Conclusions

Most research to date into mathematical models that relate the
occurrence of lightning-caused fires with physiographic and envi-
ronmental variables fails to take into account the spatial structure
of these variables. A general interpretation for the GLSM used in
this work is that the spatial term represents the cumulative effect of
unidentified and unobserved spatially structured covariates. In
non-spatial GLM, the spatial correlation of residuals is not consid-
ered and this can significantly affect the quality of the statistical
results.

It was shown that the GLSM fitted the data better than the
standard GLM. It appears, therefore, that the GLSM is necessary to
take account of any unexplained spatial variation not considered.
This statement is justified by a comparison between the ROC curves
and AUC values. In the specific problem considered in this article,
the AUC for the GSLM is 35% larger than in the GLM model.

The analysis carried out above demonstrates the great potential
of GLSM for analyzing spatial data. It also indicates the significant
risk of drawing erroneous conclusions when non-spatial models
are used for spatially structured data.
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