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There exist many GNSS applications in forestry: GPS receivers
are used to navigate forested areas (Mancebo and Chamberlain
2000), make maps to different scales, take forest inventory
(Murphy et al. 2006), make area and perimeter estimates (Tachiki
et al. 2005), manage forestry machinery (McDonald and Carter
2002; McDonald and Fulton 2005), characterize forest roads
(Martin et al. 2001), and more. GPS is the main tool used for pre-
cision forestry, i.e., planning and implementing site-specific forest
management activities and .operations aimed at improving wood
product quality and use, reducing waste, increasing profits, and
maintaining the quality of the environment (Taylor et al. 2006).
Precision and accuracy requirements depend on the forestry appli-
cation; for example, precision in meters is sufficient to delirnit large
forests, whereas precision in decimeters and even centimeters is
required for individual trees.

The receiver, thus, needs to be selected in accordance with
the type of study performed. Code-phase differential GPS (DGPS)
receivers (errors of 2-5 m) are wide1y used for most forestry
applications, whereas carrier-phase DGPSs are required for preci-
sion forestry applications.

To assess GPS observation quality according to tree mas
type, the factors that condition positioning precision and accuracy
under a forest canopy need to be identified. Research in this field
has focused essentially on identifying dasometric variables (tree
diameter and height, treetop height, plantation density, and wood
volume) and on comparative studies of measurement equipment
and methods. Sawaguchi et al. (2003) demonstrated that forest type
and antenna height condition positioning precision in differential
mode. Basal area is one of the dasometric variables with the great-
est bearing on precision for both pseudorange and carrier-phase po-
sitioning (Naesset 2001; Naesset and Jonmeister 2002). Yoshimura
and Hasegawa (2003) concluded that the plantation structure
also conditions positioning accuracy and precision. Other studies
have focused on modeling error by using logistic regression te
evaluate the probability of resolving ambiguity (Naesset et al. 2000:
Hasegawa and Yoshimura 2003). Monte Carlo simulation has also
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Abstraet: The geographic location of points using global positioning system (GPS) receivers is less accurate in forested environments than
in open spaces because of signalloss and the multipath effect of tree trunks, branches, and leaves. This has been confirmed in studies that have
concluded that a relationship exists between measurement accuracy and certain variables that characterize forest canopy, such as tree density,
basal area, and biomass volume. However, the practical usefulness of many of these studies is lirnited because they are often lirnited to

- describing associations between the variables and mean errors in the measurement interval, when measurements should be made in real
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Introduction

Global navigation satellite system (GNSS) and particularly global
positioning system (GPS) technologies are widely used in land
surveying for engineering, mapmaking, and cadastral purposes.
They are also used in forestry applications. GNSS receivers located
in open spaces and operating in a differential positioning mode can
measure the coordinates to a point with rnillimeter accuracy. Under
a forest canopy, however, attenuation (Yoshimura and Hasegawa
2003) and temporary loss of lock of the GPS signal (Hasegawa
and Yoshimura 2007) affect GPS positioning precision and accu-
racy. Nevertheless, it is possible to achieve an accuracy of better
than 0.1 m under the forest canopy by using real-time kinematic
(RTK) processing (Bakula et al. 2009), although the equipment
needs to be reinitiated frequently to achieve redundancy in the
observations.
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been used to estimate the relationship between satellite signal and
forest structure (Sawaguchi et al. 2005). Other researchers have
focused on evaluating accuracy and precision measurements
obtained by using different types of GNSS receivers (Mancebo
and Chamberlain 2000; Rodríguez-Pérez et al. 2007), comparing
different kinds of positioning (Naesset and Joinmeister 2002;
Gegout and Piedallu 2005), and comparing GPS and the GNSS
(Naesset et al. 2000, 2001). Experiments indicate that the most ac-
curate positioning is obtained in differential mode and by using
dual-frequency receivers, although, there exist problems with the
latter in resolving ambiguities because of cycle losses in the satel-
lite signal (Hasegawa and Yoshimura 2007).

The results of these assessments cannot be compared because
of the lack of standards, best practices, and systematic methods to
assess GNSS measurements under forest canopy. To compare sim-
ilar work, defining standards will have to address the assessment
of the whole receiver, including traceability, methodology, termi-
nology, acquisition, preprocessing (Beraldin et al. 2007), and the
equations to calculate accuracy and precision.

The aim of our research was to study the usefulness of machine
learning techniques for estimating GPS observation errors in for-
estry environments and to evaluate the effects of forest cover on
GPS positioning accuracy and precision.

Materials and Methods

Data Collection and Calculation of the Errors

The experimental points were located in Sancedo (a province of
León) in the northwest of Spain (Fig. 1). Observations were made
at 12 different points located in areas planted with Pinus radiata
D. Don. Measurements were also made at a reference point located

in a clearing so that the coordinates for the 12 experimental points
could be calculated.

The data were collected by using two dual-frequency GPS receiv-
ers (Hiper Plus, Topcon Positioning Systems, Inc., Livermore, CA)
that observed GPS pseudorange and carrier phase. The data for
the 12 experimental points were collected over a 4-day period
(August 20-23, 2007). Measurements were made at each experi-
mental point for at least 1.5 h, and the data were reviewed to ensure
continuity. The data were reduced to obtain 12 data sets that rep-
resented data collection over a period of 1 h. Antenna heights
ranged from 1.45 to 1.60 m, and the logging rate was 1 s.

The position of the reference point was obtained at the same
time as the position of the experimental point for each of the
12 experimental points. The coordinates for the reference point
were 42°41'08.79872"N, 6°38'03.210587"W (latitude-longitude,
WGS84), and ellipsoidal height was 933.829 m. These coordinates
were calculated by differential correction by using data from the
Ponferrada base station (the nearest reference station in the regional
GNSS network: http://gnss.itacyl.es/). The reference point was pro-
jected by setting up the following (easting, northing) coordinates:
(693,814.623, 4,728,635.531) m (Universal Transverse Mercator
(UTM)-datum ETRS89; zone 29N). The reference point coordi-
nates were used to calculate the coordinates assumed as true of the
experimental points by differential correction (the coordinates are
shown in Table 1).

Next, the accuracies obtained were deterrnined for every second
observation in each plot. The Joint Committee for Guides in
Metrology (JCGM) defined accuracy as the closeness of agreement
between a measured quantity value and a true quantity value of
a measurement (JCGM 2008). In this work, horizontal accuracy
and vertical accuracy were calculated for each sample by using the
following equations:

/ / -) / // t ; '- <,

110 220
! 1 I I !

440 km
! I

= Road/Track
.\

------ Contour line ) \-J -;./
¡ Forest (P. radiata) \ ,
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Fig. 1. Location of the experimental points and the reference point in Sancedo (León, Spain)
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Table 1. Accurate Coordinates, Trueness, and Precision for the Experimental Points and the Reference Point (ETRS89, UTM29N)

Point Easting (X) Northing (Y) Ellipsoidal height Horizontal trueness Vertical trueness Horizontal precision Vertical precision

POI 696,104.03 4,729,765.54 1,013.13 1.83 6.80 0.77 2.40

P02 696,058.33 4,729,778.21 1,013.72 4.21 3.68 1.79 2.29
P03 696,078.14 4,729,740.30 1,013.97 2.39 4.91 1.14 3.50
P04 693,652.72 4,728,368.28 913.64 1.74 4.21 0.91 2.60
P05 693,696.85 4,728,436.42 918.90 3.87 4.18 1.58 2.36
P06 693,673.89 4,728,454.87 921.66 2.12 7.13 0.99 3.64
P07 696,068.87 4,729,584.83 1,007.37 4.81 5.21 2.50 3.20
P08 696,052.45 4,729,566.48 1,008.89 3.78 4.42 1.95 3.33
P09 695,566.00 4,728,784.62 989.02 2.07 8.30 1.06 4.40

PlO 694,450.03 4,728,474.45 954.21 2.85 5.49 1.45 2.76
P11 694,457.89 4,728,452.08 955.89 2.01 10.02 1.20 5.83
P12 694,478.74 4,728,446.77 954.93 3.12 5.71 1.52 3.04
RP 693,814.62 4,728,635.53 933.83 1.32 2.33 0.54 1.42

Hace = V(E¡ - Etrue? + (N¡ - Ntrue)2 (1)

Vaee = IZ¡ - Ztruel (2)

in which Hace and Vaee indicate horizontal and vertical accuracy,
respectively; E¡, N¡, and Z¡ = positions measured at the ith second;
and Etrue, Ntrue, and Ztrue = coordinates assumed as true in the
easting, northing, and ellipsoidal height directions, respectively.

The measurement trueness is defrned as the closeness of agree-
ment between the average of an infinite number of replicate
measured quantity values and a reference quantity value (JCGM
2008), whereas the precision is the closeness of agreement between
indications or measured quantity values obtained by replicate
measurements on the same or similar objects under specified con-
ditions (JCGM 2008). Precision calculations were made for differ-
ent time intervals n measured in seconds (with n = 60, 120, 180,
240, or 300 s). Calculating precision values simplifies the output
function, and this, theoretically, makes it easier to estimate the
function by using machine learning. Table 1 shows the trueness
(calculated by using mean values) and the precision (calculated by
using standard deviation values) for both the horizontal and the
vertical measurements.

Variables Characterizing the Forestry Canopy

To characterize each tree mass, the trees in each plot in a radius
of 10 m around the experimental point were measured, and the
following dasometric variables were calculated: arithmetic mean
diameter, mean height, dorninant height, treetop height, tree den-
sity, basal area, quadratic mean diameter, Hart-Becking index,
wood volume, and biomass.

The arithmetic mean diameter (dm) is deterrnined by using the
following equation:

d
l',d

m==-L
n

(3)

in which d¡ = normal diameter (measured at a height of 1.3 m) for
each tree; and n = total number of trees in the plot.

Mean height ha corresponds to the arithmetic mean of the tree
heights

ha = ¿h¡
n

(4)

in which h¡ = tree height; and n = number of trees measured in
each plot.
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Dorninant height (Ho) was calculated as the mean height of the
four largest trees in each plot.

Treetop height (hJ was deterrnined by calculating the difference
between total height and height to the first branch.

Tree density (N) was calculated as the number of trees per
hectare.

Basal area (G) reflects the cross-section area at the normal
height of the trees in the plot

~

1i
G= -d4 L

The quadratic mean diameter (dg) measures tree diameter
compared to mean basal area

d
g

= f4GV-;;;
The Hart-Becking index (HE!) is defined as the relationship

between mean spacing between trees (a) and dorninant height (Ho),
and HE! is related to the number of trees per hectare (N)

HE! = ~ 100 = 1O~ 100H
Ho HoyN

To calculate wood volume (V) for individual trees, we used a
specific formula for Pinus radiata (Castedo-Dorado et al. 2009)

V = (0.000081d¡7746ho.97li)N

Biomass (W) was calculated by using models developed by
Balboa et al. (2006), who distinguish between the following
components: wood (Wm), bark (Wc)' large branches (Wrg), small
branches (Wr¡), twigs (Wram), and needles (Wac)

W = (Wm + Wc + Wrg + Wmrf + Wram + WaJN

= (0.0123d)6042hI.4131 + 0.0036dl·26564

+ (1.37699 + 0.001065dfh) + 0.0363d¡-6091h-o.9417

+ 0.0078d¡1.9606 + 0.0423d¡7141)N (9)

Finally, the slendemess coefficient (C) expresses the relation-
ship between mean height and mean diameter of the mass

C= ha
dm

(5)

(6)

(7)

(8)



Table 2. Dasometric Variables for Each Plot

Plot dm (m) h.; (m) Ho (m) he (m) N G (m2/ha) dg (m) HBl (%) V (m3/ha) W (kg/ha) e
POI 0.18 14.48 16.05 9.58 764 18.73 0.18 22.54 124.85 57,717 82.51
P02 0.20 16.42 17.05 10.85 732 23.65 0.20 21.68 182.46 83,696 81.64
P03 0.20 14.86 15.70 9.94 764 24.68 0.20 23.04 190.21 87,207 73.86
P04 0.28 24.58 26.48 17.08 605 38.28 0.28 15.36 385.36 179,483 88.24
P05 0.29 27.40 27.65 19.14 668 45.94 0.30 13.99 473.19 220,913 94.30
P06 0.28 25.55 25.93 16.55 509 31.59 0.28 17.10 315.00 146,441 92.27
P07 0.14 15.92 15.00 9.12 2,037 37.00 0.15 14.77 236.55 114,336 111.69
P08 0.16 18.50 18.95 10.10 1,751 39.83 0.17 12.61 278.51 131,151 114.48

P09 0.15 15.15 15.28 9.81 1,814 32.49 0.15 15.37 191.13 91,907 103.58
PlO 0.14 21.78 21.95 11.49 3,056 59.87 0.16 8.24 442.67 216,048 155.76
PlI 0.13 20.55 22.05 11.79 2,960 53.27 0.15 8.34 379.54 188,170 153.78
P12 0.12 22.48 22.28 12.06 2,992 46.22 0.14 8.21 312.87 157,546 182.16

Regression Models

To calculate GPS observation accuracy according to dasometric
variables and GPS variables and to evaluate the influence of each,
we used three different machine learning techniques, each briefly
described subsequently. The models obtained by using these tech-
niques are all nonlinear models. Other simpler models tested (such
as univariate and multivariate regression) produced unsatisfactory
results because they were incapable of establishing relationships
among accuracy and the different explanatory variables. This is
the main reason why they are not mentioned in this section; in ad-
dition, they are well-known methods that have been discussed in
similar research.

The descriptions of the machine learning techniques used in
this research are, out of necessity, brief. Readers interested in more
in-depth explanations can look up the references provided.

Measurement points were selected to have groups with inter-
nally similar dasometric variables that were considerably different
from the other groups. Hence, Points 1, 2, and 3 referred to areas
with substantially less forest cover and Points 10, 11, and 12
referred to areas with substantially more forest cover (see Table 2),
bearing in mind variables such as N, W, G, and HB!.

GPS Signal Variables

In addition, we recorded a series of variables for each measurement
second that condition observation accuracy independently of tree
canopy. These variables are listed as follows:
• PDOPp: Position dilution of precision (PDOP) for each experi-

mental point under forest canopy;
• PDOP,.: PDOP for the reference point;
• ax : Error X for the reference point;
• ay'-"': Error Y for the reference point;
• ax~'cc: Error XY for the reference point;
• az '-'~Error Z for the reference point;
• E/"Mean elevation angle for the satellites transrmttmg the

signal for the experimental point under the forest canopy;
• E: Mean elevation angle for the satellites transmitting the signal

received by the reference point;
• DLLSNCAp: Indicator of the signal-noise ratio in coarse/

acquisition (CA) code (in dB • Hz) for the experimental point
under the forest canopy;

• DLLSNCAr: Indicator of the signal-noise ratio in CA code
(in dB • Hz) for the reference point;

• nCAp: Number of satellites receiving CA code for the experi-
mental point under the forest canopy;

• nCAr: Number of satellites receiving CA code for the refer-
ence point;

• DLLSNLlp: Indicator of the signal-noise ratio in P code for Ll
(in dB • Hz) for the experimental point under the forest canopy;

• DLLSNLl,.: Indicator of the signal-noise ratio in P code for Ll
(in dB • Hz) for the reference point;

• nLlp: Number of satellites receiving code in the Ll carrier for
the experimental point under the forest canopy;

• ul L: Number of satellites receiving code in the L1 carrier for
the reference point;

• DLLSNL2p: Indicator of the signal-noise ratio in P code for L2
(in dB • Hz) for the experimental point under the forest canopy;

• DLLSNL2r: Indicator of the signal-noise ratio in P code for L2
(in dB • Hz) for the reference point;

• nL2p: Number of sate1lites receiving code in the L2 carrier for
the experimental point under the forest canopy; and

• nL2r: Number of satellites receiving code in the L2 carrier for
the reference point.

Support Vector Regression

Support vector regression (SVR), which was proposed by Vladimir
Vapnik and others to solve regression problems (Drucker et al.
1997), is based on concepts developed previously for cJassification
problems and gives rise to support vector machines (SVMs)
(Vapnik 1995). Given a training set of 1 samples (x¡,z¡), with
X¡ E R" and Z¡ E R, the goal is to find a functionf(x) with a maxi-
mum of one deviation 10 with respect to the values Zi observed for
the entire training set that is also as minimally complex as possible.

If we initially consider a linear function

f(x)=(w,x)+b with w e R", (11)bER

in which (w, x) denotes internal product in R, the problem consists
of finding w and b that satisfy the previously mentioned goal.

In this case, the condition of minimum complexity implies
obtaining w with a minimal norm IIwl12 = (w, w). The condition
that the deviation of the function with respect to Z¡ should be less
than 10 V i, may not be feasible in some cases. For this reason, slack
variables ~, e are introduced to obtain an optimization problem
that is computationally solvable.

Regression with SVR can be posed as an optimization problem
with constraints (Smola and Scholkopf 2004):

1 1
T(W,~, ~*) = 2:"wI2 + e¿)~+ ~*) (12)

i=l

subject to
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z· - (w x.) - b < e + c,,l '1 - ~l

(w, Xi) + b - Z¡ :$ e + ~i ~,e~O

(13)

(14)

The constant e > o determines the compromise between the
complexity of J and model accuracy.

To generalize to a nonlinear regression, we used a method based
on transforming the original space to a larger dimension space
in such a way that linear solutions in the new space give rise to
nonlinear solutions in the original space. Defming a positive def-
inite function k (kemel) such that the chosen transformation is
rfJ: R" -+ K, and letting

rfJ(x) . rfJ(x') = LrfJ;(x)rfJ¡(x') = k(x, x') (15)

it is demonstrated that this function k is a well-defined scalar
product (Boser et al. 1992).

Therefore, introducing the Lagrange multipliers a and a*, the
function to be minimized can be expressed as

Table 3. Means and Standard Deviations for R2 Obtained for Horizontal
Accuracy with Just One Explanatory Variable

Variable (fR2

SVR

R2

MLP

17R' R2

RBF
aR2 R2

CE

HB!

V

Ho
N
G
ha
W

dg

he
dm

DLLSNCAp
DLLSNCAR

DLLSNLlp
nCAr

»r.r,
DLLSNL2p
PDOPp

nL2p
nr.r,
Er
O"XYr_acc

DLLSNL2r

DLLSNLlr
ayr_acc

PDOPr

nCAp
CJZr_xc

Ep

«c.:

0.7572
0.7524
0.7521
0.7510
0.7501
0.7483
0.7467
0.7453
0.7448
0.7446
0.5828
0.5057
0.4050
0.3808
0.3774
0.3694
0.3558
0.3426
0.3309
0.3309
0.3278
0.3066
0.2905
0.2862
0.2827
0.2704
0.2681
0.2641
0.2457
0.2304

0.1399
0.1385
0.1345
0.1482
0.1291
0.1278
0.1505
0.1277
0.1277
0.1274
0.2446
0.2860
0.2908
0.2784
0.2226
0.2185
0.2966
0.2308
0.2566
0.2566
0.2710
0.2607
0.2217
0.2200
0.2685
0.2260
0.2592
0.2068
0.2185
0.2181

0.6745
0.6919
0.6857
0.6478
0.6781
0.6790
0.6653
0.6712
0.5304
0.6450
0.5122
0.4811
0.2788
0.2237
0.2828
0.3182
0.2001
0.0740
0.1467
0.1204
0.2724
0.2032
0.2081
0.1871
0.1581
0.1703
0.0974
0.1716
0.2121
0.0992

0.2230
0.1946
0.2082
0.2424
0.2280
0.2386
0.2420
0.2364
0.2903
0.2568
0.3098
0.2591
0.2362
0.2568
0.1825
0.2087
0.2487
0.1340
0.2259
0.1803
0.2027
0.1926
0.2054
0.1898
0.1607
0.1534
0.1251
0.1786
0.2379
0.1419

0.5756
0.5756
0.5756
0.5756
0.5707
0.5756
0.5756
0.5756
0.5756
0.5756
0.4384
0.0038
0.1873
0.1929
0.2017
0.0734
0.1388
0.0815
0.1072
0.1072
0.1769
0.1233
0.1548
0.1918
0.1088
0.0112
0.0331
0.0858
0.1112
0.0570

0.2689
0.2689
0.2689
0.2689
0.2612
0.2689
0.2689
0.2689
0.2689
0.2689
0.2967
0.0169
0.2201
0.2630
0.1926
0.1551
0.2234
0.1656
0.2075
0.2075
0.1717
0.1919
0.2071
0.2352
0.1562
0.0500
0.0894
0.1798
0.1817
0.0930

l 1
W(a,a*) = 2' (a - a*f Q(a - a*) + e L(O:¡ + o:j)

;=1

subject to
1

L(O:; - 0:;) = O,
;=1

in which

1

+ LZ¡(O:; - 0:;)
;=1

0:$ 0:;, 0:; s e,

Qij = K(x¡, Xj) == c.p(X¡)T . c.p(Xj)

(16)

i=l, ... ,l

(17)

(18)

The estirnated regression function at a given point is,
therefore,

1

J(x) = L(O:; - o:¡)k(x¡,x) + b
;=1

(19)

in which b is obtained from the fact that Eq. (13) is converted into
equality with ~i = O if 0:$ 0:; :$ e, and Eq. (14) is converted

Table 4. Means and Standard Deviations for R2 Obtained for Vertical
Accuracy witb Just One Explanatory Variable

Variable R2

SVR

R2

MLP

17R' R2

RBF
17R' (lR2

CE

HB!

V

Ho
N

G

ha
W
dg

he
dm

DLLSNCAp

DLLSNCAr

DLLSNLlp
nCA,.
nl.l ,
DLLSNL2p
PDOPp

nL2p
nLlp
Er
O"XYr_acc

DLLSNL2r

DLLSNLlr
G"yr_acc

PDOPr

nCAp

aZr_acc

s,
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«c.:

0.6410
0.6427
0.6411
0.6410
0.6112
0.6455
0.6433
0.6449
0.6215
0.6410
0.6413
0.2851
0.3431
0.3242
0.2672
0.2696
0.2418
0.1989
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Fig. 2. Variation in R2 for horizontal accuracy (top) and vertical
accuracy (bottom) as explanatory variables are added to the model
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into equality with~; = OifO ::; a7 ::; C. This functionf(x) depends
solely on the training subsets for which ai, a7 =f. o. The elements of
this subset are known as support vectors.

Multilayer Perceptron

The first modem neural model, proposed by McCulloch and
Pitts (1943), has served as the basis for many current models.
The two architectures considered are multilayer perceptron
(MLP) and the radial basis function network (RBFN), both of
which are based on a more general multilayer feedforward model
(Haykin 1999).

MLP is a neura1 network formed by an input layer, an
output layer, and one or more hidden 1ayers (Pinkus 1999). Each
neuron in layer j can be connected to all the neurons in layer
j + 1 or to just a specific number of neurons. Its output is given
by the expression

(20)

Fig. 3. Scatter plot of the mean horizontal errors versus the Hart-
Becking index for each of the 12 experimental points
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in which x¡ = ¡th input; T = nonlinear activation function for R in R;
and {Jo,(3¡, ... , {Jd = numeric parameters (the neuron weights).

The MLP output proposed in this case takes the following gen-
eral form (activation function T is a sigmoid with d neurons in the
input layer, h neurons in the hidden layer, and one neuron in the
output layer):

h

f(x) = LCjUj + Co
j=l

(21 )

in which co, C¡ , ... , ch = weights associated with the neurons in the
hidden layer; and Uj,j = 1,2, ... , h = outputs for each neuron in this
layer expressed in Eq. (20).

To train the network, we used the Bayesian regularization algo-
rithm, which adjusts the weights and values of the constants accord-
ing to Levenberg-Marquardt optimization (MacKay 1992; Foresee
and Hagan 1997). This minimizes the combination of quadratic er-
rors and weights and determines the correct combination produced
by a network that generalizes well.

Radial Basis Function Network

The RBFN differs from MLP is several ways (Bishop 1995). First
of all, it generally has a fixed architecture composed of one input
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Fig. 4. Variation in R2 for the SVR model as the time interval increases: horizontal accuracy (left) and vertical accuracy (right)
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Fig. 6. Means of the R2 values and the confidence intervals (95%) for the horizontal accuracy (left) and the vertical accuracy (right) for the reference
point, for the GPS signal variables
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Fig. 5. Means of the R2 values and the confidence intervals (95%) for
the horizontal error, for each dasometric variable, and for each GPS
signal variable, for all the experimental points

layer, one output layer, and one hidden layer. Second, the neurons
in the hidden layer have a radial basis function (RBF) as the acti-
vation function. RBFs also have the peculiarity that they only de-
pend on the distance from the argument to a specific center. In this
case, we chose a Gaussian function as giving the best results

hj(x) = e-lIx-cjI12/rJ (22)

in which x = input vector; hj = output of the jth neuron in the hidden
layer; and Cj and rj = center and the width of the corresponding
radial function, respectively,

The operation in the output layer is represented by the
expression

11

Yk(X) = Lwkjhj(x) + bk
j=1

(23)

in which Yk = response of the kth neuron in the output layer;
Wkj = weight corresponding to the connection between the kth
neuron in the output layer and the jth neuron in the hidden layer;
and bk = a constant termo
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Results

Each of the machine leaming techniques previously described was
used to make an estimate of the horizontal and vertical accuracy of
the observations. In this work, the sample was composed of a total
of 43,200 data observations. The goodness of fit for each model
was measured by using the coefficient of determination R2, whose
values range between O and l. R2, which indicates the fraction of
variance in a GPS error explained by the model under consideration
(1 represents a perfect fit), is calculated as follows:

R2 = -'-(S_SY_-_S_SE....:...)
SSY

(24)

in which

SSY?=¡ (y¡ - y)2 and SSE;:"'¡ (y¡ - y¡)2 (25)

in which Y¡ = ith value for the variable to be predicted; y = variable
measurement; and y¡ = prediction of the model for y¡.

A cross-validation procedure was used for the SVR method to
determine the type of kernel giving the best results. This kernel,
based on RBFs, is defined as

k(u, v) = exp( -y*lu - v12) (26)

in which y = a parameter that weights the difference between u
and v.

The network was initially trained by using just one explanatory
variable each time, with a view to determine which variable yielded
most information on the error. The network parameters were deter-
rnined in each case by using 20-fold cross-validation. Table 3
shows the means and standard deviations for R2 obtained on pre-
dicting horizontal accuracy with each parameter separately and by
using each ofthe methods. Table 4 shows the same data for error in
the Z coordinate. In both tables, it can be observed that the method
producing the best results was SVR and that the dasometric vari-
ables for each plot yielded the best fit, with R2 values of more than
0.7, mostly for horizontal accuracy.

By using various input variable combinations, the best results
were again obtained for SVR, with values that depended on the
time interval considered. The procedure used was the following:
we started with the variable with the highest value for R2, added the
variable producing the best fit for two explanatory variables to the
model, and added other variables successively until there was no
further increase in R2. For a 5-min time interval (i.e., considering
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mean error every 5 min as the dependent variable), the optimal
parameters were e = 1, e = 0.05, and y = 0.1 for the XY error
(horizontal accuracy) and e = 1000, e = 0.001, and y = 2 for
the Z error (vertical accuracy).

Fig. 2 shows the contribution of each variable to the total pre-
cision of the model. It can be observed that the dasometric values

best explained most of the error. The contribution of the remaining
parameters and variables was quite small. This was confirmed by
applying the same techniques to the errors at the reference point to
locate a model that related these errors with the GPS variables (the
forest canopy variables, obviously, had no bearing on reference
point error).
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represented consecutively;the solid line is assigned to the calculatedaccuracy and the dashed line to the estimated one, for each of the three regression
models; the calculated accuracy for the reference point is shown with a dotted line
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Table 5. Maximum R2 Obtained for Accuracy for Each of the 12 Points
under the Forest Canopy by Technique Used

SVR MLP RBF

Hace

v.,
0.7869
0.6584

0.6109
0.5646

0.7393
0.6422

This error dependence on the forest canopy was not detected by
simpler models, such as linear regression or polynomial models.
Fig. 3 shows a mean value for horizontal accuracy for each exper-
imental point with reference to the HB! variable. There exists no
observable direct relationship between them. The same conc1usion
can be drawn regarding the remaining forest cover and GPS signal
parameters and variables.

It can be concluded from the results that the influence on accu-
. racy of the parameters associated directly with the GPS signal
is low.

Error variability is important when trying to obtain a good fit.
The fit improved considerably with longer time intervals because
there exist fewer fluctuations in the output variable (Fig. 4).

To determine whether significant differences exist for the values
for R2 obtained by using 20-fold cross-validation, means were com-
pared for each of the variables by using the t-test, with the results
showing that for the dasometric variables (which pro vide most
information on the model), only d.; differed from the rest. Fig. 5
shows the R2 means and confidence intervals for horizontal error,
for the dasometric variables and the GPS signal variables, and for
each experimental point under the forest canopy. It confirms the
t-test, and the R2 obtained for d.; is significantly lower than the
other variables. Therefore, with the exception of d"" the dasometric
variables explain the accuracy of the measures equally.

None of the analyzed dasometric variables directly measure fo-
liage density, and Sigrist et al. (1999) concluded that, although the
existence of the canopy overhead may degrade positional precision,
it is the foliage that plays the greatest role in signal reception. For
the same kind of analysis made for accuracy at the reference point,
it was concluded that there were no significant differences between
the different GPS signal variables (the dasometric variables do not,
obviously, affect accuracy at this point). The results ofthe t-test are
shown in Fig. 6. The best fit was for DLLSNCAr, in which
Rz = 0.34, so the signal variables were insufficient to determine
error at this point. To corroborate this result, larger data sets are
needed; however, Yeh et al. (2010), who studied the quality and
precision of GPS positioning in reference stations, found no signifi-
cant clock offset and multipath effects.

In Fig. 7, which shows the observed (solid line) and estimated
(dashed line) precision values for 5-min time intervals, jumps
corresponding to the 12 experimental points are evident, although
they have been marked by using vertical dotted lines to facilitate
their recognition. The dotted line corresponds to the precision of
the reference point. As expected, the error for the reference point
(dotted line) is considerably smaller than on points under the forest
canopy; therefore, as the statistic analysis has confmned, most of
the error is because of the effect of vegetation on the GPS signal.
The corresponding values for R2 are shown in Table 5. SVR was the
model with the best fit, although it was similar to the fit for the MLP
network.

Conclusions

We evaluated the influence of dasometric variables and the varia-
bles associated with the GPS signal for the accuracy of observations
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made with a GPS receiver under the forest canopy. The results
obtained for the three machine learning techniques used pointed
to the same conc1usion: accuracy and precision depend greatly
on the presence of forest cover and far less on GPS signal variables,
such as PDOP, the number of satellites, or the signal-noise ratio.

A comparison of the coefficients of determination for each
dasometric variable that was analyzed revealed no significant
differences between the variability explained by each variable, with
the sole exception of the mean diameter, for which lower coeffi-
cients of determination were obtained. Therefore, any of these var-
iables can be used to construct models to estimate error, although it
should be noted that other factors that were not inc1uded in the
model could affect accuracy.

The great variability in accuracy over time makes it complicated
to locate mathematical mode1s to estimate measurement error for
the kind of variables that were analyzed here, inc1uding complex
nonlinear models, such as neural networks. This may explain
why, in previous research using linear models, accuracy and
precision of the measurement interval are associated with a small
number of explanatory variables, with no information provided
about the fit, merely [through an analysis of variance (ANOVA)]
on the significance of the variables. The results improved when
mean values for the time intervals of more than 1 s were used
because this reduced the complexity of the variable that was es ti-
mated. The better fit was obtained by calculating precision values
for 5-min intervals (the longest intervals studied). The best fit for
horizontal accuracy was 80%; and for vertical accuracy, the best fit
was only 66%.
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