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Abstraet: The identification of outliers in global positioning system (GPS) observations-to compare equipment, positioning methods, or
working conditions-has traditionally been performed using univariate or multivariate statistics. However, these methods have certain draw-
backs when processing data collected by GPS receivers. Such data can be more suitably handled as observations at discrete points of a smooth
stochastic process and, consequently, other statistical approaches to the analysis offunctional data may prove more suitable. We analyzed the

. applicability of the concept of functional depth to the identification of outliers in GPS observations. The proposed method was applied to 12
series of GPS receiver data collected in an open space and in similar signal reception conditions. The results obtained adapted better to the
expected results, given the signal-reception conditions, than those obtained by the classical statistical approaches used by other writers to
compare GPS observations. DOI: lO.10611(ASCE)SU.1943-5428.0000056. © 2011 American Society Di Civil Engineers.
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Introduetion

Global positioning system (GPS) devices are used in many appli-
cations that require accurate point measurements, such as geodesy,
surveying, mapping, transportation, navigation, and the geosci-
ences. GPS positional accuracy depends on many factors (Van
Sickle 1996; Guochang 2003). Errors in the satellite dock, satellite
ephemeris, receiver dock, and atmospheric delays degrade accu-
racy, as does satellite geometry.

The level of accuracy required in GPS measurements varies
greatly from application to application. A number of studies have
been carried out to assess differences in accuracy between receivers
(Serr et al. 2006), positioning methods (Naesset and Jonmeister
2002), and working environments (Hasegawa and Yoshimura
2003; Tiberius and Kensellar 2003; Rodríguez-Pérez et al.
2007). The process generally consists of calculating parameters
characterizing measurement precision, which are then compared
using statistical tests that determine whether or not the observations
come from the same distribution (Rodriguez-Pérez et al. 2007).
From the point of view of statistics, an outlier is defined as an ob-
servation that lies outside the overall pattem of a distribution. One
of the typical criteria for identifying observations considered to be
outliers is the 3 - O" rejection criterion, i.e., outliers are observa-
tions that deviate from the mean in an amount equal to or greater
than three times the standard deviation. Nickitopoulou et al. (2006)
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conducted a large number of experiments to simulate harmonic
movements using a rotating GPS-receiver antenna; the accuracy
of the observations was deterrnined by comparing the recorded
coordinates with the real ones and two types of deviations from
the theoretical curves were identified according to their scale.
Finally, these writers detected outliers from these deviations using
the 3 - O" criterion, finding 1.5% of outliers in midlatitudes when at
least six satellites were visible.

Psimoulis and Stiros (2008) used equipment composed of a GPS
receptor and a robotic total station to determine the oscillation
parameters for major structures. They also used the 3 - O" rejection
criterion to discard gross errors. Some of these errors were related
to data gaps, but others were according to their interpretation.

Wdowinski et al. (1997) considered two types of outliers, each
due to a specific cause: (1) observations with error bars larger than
three times the root-mean square (RMS) and (2) observations that
deviate from the mean of the series more than the number of times
the RMS scatters.

Nonetheless, this kind of analysis is not the most appropriate for
detecting outliers when only a dense set of data collected over time
is available, such as the data collected by GPS receivers, which can
be considered as observations at discrete points of a curve. The
main reasons univariate or multivariate statistical methods are not
suitable for working with functional data are that (1) the time
correlation structure is ignored by these methods, (2) the infinite
dimensionality of the functions means that methods for multi-
variate samples are greatly affected by the curse of dimensionality,
(3) many of these methods are implicitly restricted to Gaussian or
elliptical populations, and (4) outliers may not be detected for
each time instant in a curve, yet the curve itself may be an outlier
(Febrero et al. 2008).

To overcome these drawbacks, a number of writers have
proposed methods for detecting outliers in sets of functional data
(Fraiman and Muniz 2001; López-Pintado and Romo 2007; Cuevas
et al. 2006; Febrero et al. 2008). We analyze, as an altemative to
traditional methods, the usefulness of one of these functional-
depth methods in order to identify outliers in GPS observations,



Functional depth aims to measure the centrality of a given curve
within a group of curves.

The article is organized as follows: the section on materials and
methods describes how to build functions from a set of discrete
points using a smoothing process, the next section reviews the con-
cept of functional depth and its usefulness for identifying functional
outliers, the section on the case study describes the experimental
data used in the study, and the results section describes the results
obtained for the functional analysis and compares these results with
those obtained from applying statistical tests for comparing non-
Gaussian distributions, namely, the Kruskal- Wallis and Mann-
Whitney tests (Hollander and Wolf 1999). The article concludes
with the conclusions drawn from an analysis of the results.

The solution to this problem is given by (Ramsay and Silverman
2005)

(6)

By using a Fourier development as the basis functions, the matrix R
in Eq. (4) is the identity matrix.

Smoothing then basically consists of fitting a curve to the point
observations. The adjustment is on the basis of minimizing the error
estimate obtained by calculating the difference between the ob-
served and adjusted errors. Smoothing also avoids excessive cur-
vature in the fitted curves by penalizing second derivatives.

Functional Data Concept

Depth measurement was introduced originally in multivariate
analysis to measure the centrality of a point with respect to a cloud
of points. Depth provides a way of ordering points in a Euclidian
space from the center to the periphery in such a way that the points
closest to the center will have greater depth. The notion of depth has
recently been extended to functional data (Fraiman and Muniz
2001; Cuevas et al. 2006). Functional depth measures the centrality
of a curve X¡ within a set of curves XI, ... , X,..

The most popular depth measurements are
• Fraiman-Muniz depth (FMD): Let FIl,t[x¡(t)] be the cumulative

empirical-distribution function (Fraiman and Muniz 2001) for
the values of the curves [x¡(t)J:;"1 in an instant of time t E

(a,b) given by

Materials and Methods

Smoothing

Functional data are observations of a random continuous process
observed at discrete points (Ramsay and Silverman 2005). Given a
set of observations x(tJ in a set of np points, tj E IR, in which
tj = each instant of time, all the observations can be considered
as discrete observations of the function x(t) E xcF, in which
F = functional space. To estímate the function x(t), it is considered
that F = span( <PI' ... , <P"b), in which (<Pk)k = 1, ... , nb is a set of
basis functions. In view of this expansion,

/lb

x(t) = ¿Ck<Pk(t)
k=1

(1) (7)

This set of basis functions, (<Pk)k = 1, ... , nb, may be formed of
polynomial functions, piecewise linear functions, or splines. In this
research, we used the set of Fourier-basis functions because these
represent an orthonormal set in the function space.

Hence, the smoothing problem consists of solving the following
regularization problem:

in which 1(·) is the indicator function.
The Fraiman-Muniz depth .for a curve X¡ with respect to the

set XI, ... , X/l is given by

FMD,,[X;(t)] = lb DIl[x¡(t)]dt (8)

"p

min ¿[Zj - x(tJJ2 + Ar(X)
XEF

j=l

in which DIl[x¡(t)] is the point depth of x¡(t), Vt E (a, b), given
by(2)

(9)in which Zj = x(tj) + Cj (Cj being a random noise with zero mean) is
the result of observing X at the point tj; I' = differential operator that
penalizes the complexity of the solution; and A = regularization
parameter that regulates the intensity of the regularization (Ramsay
and Silverman 2005).

It is quite usual to use the second-order operator (Ramsay and
Silverman 2005) to take into account the curvature of the evaluated
function.

• H-modal depth (HMD): The functional mode (which is based on
the mode concept) is defined as the curve most densely sur-
rounded by the other curves in the sample. H-modal depth
(Cuevas et al. 2006) is expressed as

r(x) = J {D2[X(t)]} 2dt (3)
in which K:R+ -+ R+ = kemel function; 11 . 11 = norm in func-
tional space; and h = bandwidth parameter (see Cuevas and
Fraiman 1997 for more information on the choice of the band-
width). One of the most widely used norms for a functional
space is L2, given as

Bearing in mind the expansion in Eq. (1), Eq. (2) may be written as

min[(z - <I>C)T(Z - <I>c) + AcTRc]
e

(4)

in which z = (ZI, ... , ZIlP)T is the vector of observations; e =
(c¡, ... , Cnb)T is the vector of coefficients of the functional expan-
sion; <I> is the np x nb matrix with <I>jk= <Pk(tj) elements; and R is
the nb x nb matrix with elements

{
(b }1/2

Ilx¡(t) - 4t)lb = la [x¡(t) - xj(t)J2dt (11)

The infinite norm L00 is sometimes used.

Ilx¡(t) - Xj(t) 1100 = sup Ix¡(t) - xj(t)1
tE(a,b)

(12)(5)
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Different kemel functions K(-) can also be defined, among them
the truncated Gaussian kemel (Cuevas et al. 2006)

2 (t2
)K(t) = -exp --V27r 2

Functional Outliers

t » O (13)

A functional-sample set may have elements that, although they do
not incorporate error in themselves, may feature pattems different
from the others. The depth measurement described previously is
used to identify outliers in functional samples. This enables sets
of observations over time fitted to curves to be compared, rather
than just the mean values in the measurement time interval.

Depth and outlier are inverse concepts; hence, an outlier for a
functional sample will have considerably less depth. The curves
with the least depth are sought in order to identify functional
outliers.

H-modal depth and a truncated Gaussian kemel generate the
outlier selection criterion, and the bandwidth parameter chosen
was the 15th percentile of the empirical distribution of (¡¡x¡ -
Xjll2i,j = 1, ... ,n) (Febrero et al. 2008). A cutoff e is selected in
such a way that the percentage of correct observations poorly iden-
tified as outliers (type I error) is a (usually 5% or 1%), given by

POINT OBSERVATION
(FIElDWORK)

CURVE FITTING 1--
(SMOOTHING)

FUNCTIONAL DEPTH
DETERMINATION -

(H-MODAL ALGORITHM)

,

FUNCTIONAL DEPTH
PROBABILITY
ESTIMATION

(BOOTSTRAP)

OUTLIER
DETERMINATION

(CUTOFF
CALCULA TION)

Pr{HMDn[x¡(t)] ::; e} = a, i = 1, ... ,n (14)

Unfortunately, the distribution of the chosen functional depth is not
known and so the value for e had to be estimated. Of the different
approaches to estimating this value (Febrero et al. 2008), we chose
for the purpose of this research a method based on bootstrapping
(Peng and Qi 2008) the curves of the original set with a probability
proportional to depth.

The bootstrapping approach can be summarized as follows:
1. A new sample is extracted from the original sample by

means of sampling with replacement; in other words, each
extracted element is replaced after extraction and so may be
selected again;

2. Based on this new sample, the populational parameter of inter-
est is estimated on the basis of the construction of a statistic;

3. The two steps above are repeated until a large number of es-
timates are obtained; and

4. Finally, the empirical distribution of the statistic is deterrnined.
Fig. 1 shows a flowchart depicting the process used to identify

outliers. First, point observations are transformed into curves by a
smoothing process. Then functional depth for each curve is calcu-
lated. Functional depth of each curve measures the distance to the
central curve with the highest depth. In the next step, the probability
distribution of the functional depth is estimated through a process

r
í

" lO .2

~
~

I

., o t
~~ :12

Fig. 1. Flowchart showing the methodology used to identify outliers
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of sampling (bootstrap). Finally, from that probability distribution,
the value of the quantile (C) corresponding to a specific signifi-
cance level (a) is calculated. Curves with a depth less than or equal
to C are classified as outliers.

Case Study

Data Collection

The sample used for this research consisted of error measurements
for a GPS receiver in a fixed location with no obstacles to the re-
ception of GPS signals.

The GPS experimental data were collected for 4 days over peri-
ods of 5-6 h between August 20 and 23,2007, using one double-
frequency GPS receiver (HiperPlus, Topcon Positioning Systems,
Inc., Liverrnore, CA) observing the GPS pseudorange and carrier
phase. The antenna heights ranged from 1.45 and 1.60 m, and the
logging rate was 1 s. Collection of observations lasted for at least
1.5 h and the process was repeated three times a day. GPS data were
revised to ensure continuity and were cut to obtain 12 data sets of
1 h (three data sets per day).

Then the sample [(X"X2, ""X3600)jl)~, consists of 12 observa-
tions, in which xij represents measurement in instant i (in seconds)
over the period of an hour at point j.

The observation point was located at a latitude of 42°41'
08.79872" N, a longitude of 6°38'03.210587" W (WGS84) and
at an ellipsoidal height of 933.829 m. These coordinates were
obtained by static positioning and postprocessing correction were
carried out using the base station called PONF, which was the near-
est reference station in the Regional GNSS Network (Regional
GNSS Network). The geographic coordinates of the observation
point were projected and this position was set up as the true position
for calculating horizontal and vertical accuracies. The Universal
Transverse Mercator (UTM) coordinates were Xtrue = 693,814.623
and Y true= 4,728,635.531 (DatumETRS89; zone 29N). TheZtrue is
the ellipsoidal height.

Data Characterization

Several GPS parameters were selected to try to justify possible out-
liers. Because accuracy and precision of GPS position depend on
the number of satellites, this parameter was considered as the mean
number of satellites (N) in which the signal was received. Mean
elevation angle (EA) and position dilution of precision (PDOP)
are two useful indicators of satellite geometry for three-dimensional
(3D) positioning. The GPS Ll and L2 carrier frequencies are sus-
ceptible to interference from other transmitted signals or to disturb-
ances caused by obstacles. The channel signal-to-noise ratio (ratio
of received signal power to the noise power accompanying the GPS
signal) relating to the delay-lock loops for coarse acquisition (CA)
code (SNCA), PLl code (SNLl), and PL2 code (SNL2) were con-
sidered for this research. Table 1 shows the basic statistics for the
studied parameters. The mean number of satellites was not con-
verted to an integer so the observations corresponding to the mini-
mum and maximum values could be better distinguished.

Error Calculation

The error in each time instant was estimated by comparing the co-
ordinates observed in each second with the coordinates considered
as true:

(JXY...acc = J(Xi - Xtrue? + (Y¡ - y true)2

(Jz...acc = IZ¡ - Ztruel (15)

Table 1. Values ofParameters with Influence on Accuracy for 12 Data Sets

Position N EA (degrees) PDOP SNCA SNLl SNL2

1 10.32 37.74 1.86 46.14 33.71 33.59
2 10.49 34.13 1.98 45.58 32.27 32.17
3 8.88 32.84 2.42 45.67 31.87 31.75
4 10.23 38.69 1.77 46.43 36.42 36.33
5 10.84 35.00 1.71 45.62 33.00 32.93
6 8.88 35.60 2.16 46.29 33.44 33.38
7 10.81 35.27 1.71 45.67 32.90 32.82
8 9.35 34.77 2.11 46.11 32.92 32.86
9 10.23 38.71 1.76 46.30 34.08 33.97
10 11.29 34.52 1.85 46.58 34.41 36.29
11 9.85 31.16 2.06 46.35 33.39 33.28
12 11.92 31.11 1.82 45.84 32.93 32.81
Minimum 8.88 31.11 1.71 45.58 31.87 31.75
Maximum 11.92 38.71 2.16 46.58 36.41 36.33
Mean 10.26 34.96 1.93 46.05 33.44 33.52
Standard deviation 0.92 2.54 0.22 0.36 1.17 1.43

in which (Jxy ...acc and (Jz...acc = horizontal (planimetric) and vertical
(altimetric) accuracy, respectively; Xi' Y¡, and Z¡ = measured posi-
tions in the instant i; and Xtrue, Ytrue, and Ztrue = true positions along
the easting, northing, and ellipsoidal height directions, respectively.

Results

The first step in identifying outliers was to fit the error values for
each point to a curve using a smoothing process. An important
aspect of this process was the selection of the number of basis func-
tions to include in the expansion; this was done using the coeffi-
cient of deterrnination (RSQ) value obtained in the process. The
RSQ is given by

(J2
RSQ =-EÉ-

(J~(Jt

in which (J~b = square covariance of estimate and real variables
(horizontal and vertical errors in our case); and (J~ and ()~ = their
variances, respectively.

(16)

o
(/)
el:

0.5

O~~~~~~~~~~~~~~~~~~~O 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
N° of basis functions

Fig. 2. RSQ in the smoothing obtained for the different sizes of basis-
function sets considered
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Fig. 3. Functional sample studied. Horizontal error (Ieft) and vertical error (right) calculated over 1 h with observations recorded each second; these
curves fit the GPS errors calculated every second

Of interest was equilibrium between the number of basis func-
tions and the error in the fit, resulting in smal! errors for a number of
basis functions that did not represent an excessive computational
cost. Fig. 2, shows that in the least favorable case (the observation
set requiring most basis functions to achieve a satisfactory fit), the
RSQ asymptotically appraached 1 fram 3,000 basis functions. Con-
sequently, this was the number of basis functions used for the
smoothing.

A sample (Xj) )~Iwas obtained, in which Xj represents a function.
Fig. 3 shows the functional sample obtained after smoothing for
both horizontal and vertical errors, In each of the graphs are 12
curves, one for each data set, showing changes over time of the
error. The functional complexity of the sample is evident, with a
large number of local minimums and maximums and very pra-
nounced slopes. At first sight, there are no noticeable differences
between the error curves, and this could lead to the conclusion that
none of the curves differ considerably fram the rest.

For this set of curves, the H-modal depth measurement was
taken by using the norm L2, Outliers were then identified as de-
scribed previously. The picture to the right in Fig. 4 shows the only
outlier identified for the horizontal error, corresponding to the curve
number 3 for Dé = 0,001. No outlier was identified for Z error.

This result differs from that obtained by using the Kruskal-
Wal!is test (the fact that the errors do not fol!ow a normal distri-
bution was first checked, for which reason a nonparametric test
was used) for al! the positions except number 3. This test rejected
the null hypothesis at a 99% significance leve! that the 11 error
observations (al! except number 3) carne fram the same population.
Recal! that the Kruskal-Wal!is test compares the medians of the
graups, so it is possible to have a tiny p value---clear evidence that
the population medians are different-even if the distributions
overIap considerably. Moreover, when the values for each pair
of curves are compared using a Mann-Whitney test, the null hy-
pothesis is rejected. That means that according to this test, none
of the 12 curves comes fram the same population. In Pig. 5,
two of the horizontal error curves (8 and 9) represented in Fig. 3
are shown. It can be seen that they are quite similar, Also, the
parameters in Table 1 for these two curves are very similar.

We also implemented the classic outlier detection study fram
a vectorial perspective, i.e., assessing the Z-score value to see
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Fig. 4. Set of horizontal error curves not considered as outliers frorn a
functional perspective (left); horizontal error curve identified as an
outlier using depth measurement (right)

whether the difference for each observation and the overall mean
surpassed three standard deviations:

Vi - V,
Zi=--

a
(17)

in which Vi = mean value of the observations by receptor i;
V, = reference value (the global mean); and a = standard deviation
of the sample.

According to this criterion, a set of data is regarded as an outlier
for Dé = 0.01 if the corresponding Z-score is greater than 3, Thus,
according to this appraach, there are no outliers in the set of 12
curves, including curve number 3, identified as outlier by the func-
tional method praposed.

So, by using functional depth to compare graups of sample
data, we obtain totally different results fram those for classical
statistical hypotheses. This is because the classical test compares
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Fig. 5. Horizontal error curves for two observations with similar GPS
parameters; neither of these two curves is considered as an outlier using
the criteria of functional depth

central values surnrnanzmg the whole statistical distribution,
whereas functional depth allows curves to be compared.

The explanation for the outlier identified via functional analysis
was given by an analysis of the mean values for the GPS parameters
recorded for each observation that had a bearing on the precision of
the measurements given in Table l. As can be observed, position 3
recorded the smallest mean values for the variables N, EA, SNLl,
and SNL2, one of the lowest for the variable SNCA, and the highest
for PDOP. Position 3 overall, in fact, had the variable values that
most negatively affected the precision of the measurements. This
may have given rise to larger errors in this set of observations than
in the other sets (it had the greatest mean-error value) and, conse-
quently, explains why it was identified as an outlier when compared
with the other observations by the depth measurement.

Conclusions

We analyzed the application potential offunctional-data analysis to
the identification of outliers in errors in a set of observations made
with a GPS receiver. The functional focus considers measurement
errors as observations for a smooth random process observed at
discrete time points. Outliers are then identified by comparing
curves rather than central values as in traditional statistical tests
for comparing distributions. This represents a considerable advan-
tage because all the information in the measured interval of time is
used rather than a surnrnary value. Furthermore, because the
method is nonpararnetric, the functional analysis does not assume
a normal distribution for the errors.

Application of the method to a set of 12 GPS observations made
at the sarne location but on different days enabled us to determine
that the observation set for one of the days could be considered an
outlier with respect to the other 11 observation sets.

Analysis of the set of variables that had a bearing on error, fur-
thermore, enabled an explanation ofwhy the errors recorded on that
particular day could be considered as outliers with respect to the
errors obtained on the other days.
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