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ABSTRACT
In lightning-induced fire risk prediction models, the number of potential predic-

tors is usually high, with some redundancy among them. It is therefore important to
select the best subset of predictors that obtain models with the greatest discrimina-
tion capacity. With this aim in mind, the logistic generalized linear model was used
to estimate lightning-induced fire occurrence using a case study of the province
of León (northwest Spain). A bootstrap-based test was used to obtain the optimal
number of predictors and to model this optimal number of predictors displaying
the largest area under the receiver operating characteristics curve. The results show
that of the 16 variables initially considered, only three were necessary to obtain the
model with the best discriminatory capacity for estimating lightning-induced fire
occurrence. Moreover, this model can be considered equivalent to another nine al-
ternative models with three covariates. Both the optimal and the equivalent models
are useful in the spatially explicit assessment of fire risk, the planning and coordina-
tion of regional efforts to identify areas at greatest risk, and the design of long-term
wildfire management strategies. The methodology used for this case study can be ap-
plied to other wildfire risk assessment situations where multiple and interconnected
covariates are available.
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Selecting Variables for Modeling Lightning Fire Risk
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INTRODUCTION

In the countries around the Mediterranean Basin and in other Mediterranean-
type areas of the world, forest fires are predominantly caused by humans (Vázquez
and Moreno 1998). Lightning is also an important ignition cause (Pyne et al. 1996),
however, and lightning-ignited fires can burn larger areas of forest than those caused
by humans because of remoteness and aggregation in time and space (Podur et al .
2003).

Several investigators have reported that lightning-induced fires do not occur at
random but tend to start in specific places (Vankat 1985). The effectiveness of
individual lightning strikes in igniting a forest fire is potentially affected by the
following factors: variations in lightning properties such as quantity, polarity and
intensity; forest fuel moisture properties resulting from recent weather conditions
including rainfall, temperature, and humidity; topographic variables that may affect
the aforementioned variables (Diaz-Avalos et al. 2001); and rates of combustion,
which vary according to the type of fuel. The relative importance of all these variables
varies according to the scale considered; however, it is unrealistic to present a general
model for large scales, thus making it advisable to develop models at local or regional
scales (Pacheco et al. 2009).

In order to prevent, minimize, and mitigate the effects of lightning-induced
forest fires, a priori risk analysis and maps indicating vulnerable areas are very
useful (Bonazountas et al. 2005). In the literature, different statistical methods have
been used to document spatial patterns of lightning-induced fires, namely, linear
regression, logistic regression, multivariate discriminant analysis, classification and
regression trees, neural networks, and so on. Logistic regression analysis has been
particularly successful in predicting fire occurrence and in examining the most
critical factors involved in fire incidence (Garcı́a et al. 1995; Vasconcelos et al. 2001;
Andrews et al. 2003; Wotton and Martell 2005; Martinez et al. 2009; Vilar et al. 2010).

One of the main problems associated with the development of a logistic fire
risk model is identifying the best subsets of predictors that establish the model
or models with the best discriminatory capacity. This problem is important both
in human-caused and lightning-induced risk assessment because the number of
potential covariates is often very high and many predictors are mutually redundant
(Martı́nez et al. 2009). In general, the more variables added to a model, the better
the apparent fit of the observed data; however, the inclusion of irrelevant variables
can increase the variance of the ensuing estimates (leading to a loss in the predictive
capacity of the model) and can make the fitted model difficult to interpret.

Automatic selection procedures such as stepwise selection or backward elimina-
tion are usually not very appropriate because the selected models can contain irrele-
vant variables (Hosmer and Lemeshow 2000). In addition, for practical applications
of the model, some of the potential explanatory variables are not easily available
or cannot be obtained accurately. The bootstrap-based test used in this study over-
comes these drawbacks since it detects optimal combination of the variables that best
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discriminate between groups (two, in our case—presence and absence), producing
parsimonious prediction models.

The aim of this research was to test the bootstrap method for developing a
lightning-induced fire prediction model, using data for a case study referring to the
province of León (northwest Spain). The applicability of this methodology for fire
risk assessment is also discussed.

METHODS AND MATERIALS

Data

The data used were obtained from five different sources over a 6-year period
(2002–2007), although only the months of May to September (inclusive) were con-
sidered because lightning strikes and lightning-caused fires occurred almost exclu-
sively in this period (Castedo-Dorado et al. 2011). The period 2002–2007 was selected
because: (1) the year 2002 was the first year in which wildfire ignition points were
recorded using X,Y coordinates; (2) it admits the assumption that land cover does
not differ from that of 2003, the year for which land cover data was available; and
(3) since 2001 flash detection efficiency has exceeded 90% and average location
accuracy has improved to within 0.5 km.

The lightning location database (supplied by AEMET, the Spanish Meteorological
Agency) provides information such as lightning intensity, polarity, date and time,
estimated coordinates of lightning strikes, and quality of location estimates. In order
to reduce the uncertainty of the number of strikes in each type of land cover, only
flashes with χ2 equal to or less than 2 and a long semi-axis radius of the error ellipse
equal to or less than 1.5 km were used (Nieto et al . 2006); this is important in the
studied area (the province of León) because it is characterized by fragmented land
cover. Therefore the database used for this study included 78,256 lightning flashes.

The Spanish Ministry of the Environment and Rural and Marine Affairs provided
data on ignition locations of lightning-induced wildfires. This database includes
information about detection time, ignition location, and estimated cause of ignition.
Topographic variables (altitude, aspect and slope) were calculated using the digital
elevation model (DEM) provided by the Spanish National Cartographic Database.

The composition and structure of land cover was obtained from the digital
Spanish Forest Map for the province of León (Spanish Ministry of the Environ-
ment 2003). To deal with more homogeneous types of land cover, the categories
were grouped in the following classes: coniferous woodland, broadleaf woodland,
mixed woodland, non-combustible areas, gallery woodland, open woodland, mo-
saics of woodland and others, shrubland, grassland, recently deforested areas, and
recent forest plantations and reforestations.

Provided by AEMET was daily meteorological data (hourly or daily observations
of temperature, relative humidity, and rainfall) that were derived from raw data
recorded at 344 weather stations located in León and nearby provinces. Geostatistical
methods were used to interpolate weather station data. Universal kriging was used
for rainfall and relative humidity data calculations, whereas co-kriging interpolation
was used to model temperature.

The studied area (province of León, Figure 1A) was partitioned in pixels of 3 ×
3 km, resulting in a total of 1882 pixels. All digital information available for the

256 Hum. Ecol. Risk Assess. Vol. 19, No. 1, 2013

D
ow

nl
oa

de
d 

by
 [U

O
V

 U
ni

ve
rs

ity
 o

f O
vi

ed
o]

 a
t 0

4:
55

 0
9 

A
pr

il 
20

13
 



Selecting Variables for Modeling Lightning Fire Risk

Figure 1. Studied area. (A) The province of León, Spain and (B) the location and
number of observed lightning-induced fires for 2002–2007.

analysis was converted to this 3 × 3 km spatial resolution. This particular grid size
was selected because it represents a compromise between resolution requirements,
interpolation accuracy, and computation cost. Lightning-induced fires occurred in
179 pixels in the period 2002–2007 (Figure 1B).

According to previous studies (Castedo-Dorado et al . 2011), 16 variables related to
lightning activity, topography, vegetation cover, lightning–vegetation cover interac-
tion, and meteorology were selected for modeling and predicting lightning-induced
fires (Table 1).

Methods

The spatial patterns of occurrence were analysed by seeking relationships between
the presence/absence of lightning-caused forest fires in a 3 × 3 km grid and the
potential explanatory variables converted to this scale by a geographic information
system.

Table 1. Potential explanatory variables used in the bootstrap analysis.

Variable Meaning

X 1 Mean altitude (m)
X 2 Mean slope (%)
X 3 Number of strikes (flashes)
X 4 Number of strikes in shrubland
X 5 Mean intensity (kA) of negative flashes
X 6 Mean intensity (kA) of positive flashes
X 7 Number of positive flashes
X 8 Percentage of coniferous woodland
X 9 Percentage of agricultural areas
X 10 Percentage of forested areas
X 11 Number of strikes in coniferous woodland
X 12 Number of strikes in broadleaf woodland
X 13 Number of strikes in forested areas
X 14 Number of strikes in agricultural areas
X 15 Number of thunderstorms days without rainfall
X 16 Number of days with moisture lower than average moisture
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The 1882 pixels representing the province of León were coded with 0 or 1,
representing, respectively, the absence or occurrence of one or more lightning-
induced ignitions in the period 2002–2007. In a logistic regression framework,
discrimination between the two possible states of the binary response depends on
a set of p continuous covariates (Xj). The expression of a logistic generalized linear
model (GLM) (McCullagh and Nelder 1989) is given by:

p (X) = p (Y = 1|X) = exp
(
α + α1 · X1 + . . .+ αp · Xp

)

1+ exp
(
α + α1 · X1 + . . .+ αp · Xp

) (1)

where Xj (j = 1, . . . , p) are the explanatory covariates, α is a constant, and αj (j =
1, . . . , p) are the unknown parameters.

The proposed bootstrap-based test for covariate selection selects a GLM contain-
ing a subset of q variables (q ≤ p), and eliminates the remainder from the model,
according to an optimal criterion based on a receiver operation characteristic (ROC)
curve (Swets and Pickett 1982). In practice, the area under the ROC curve (AUC)
is one of the most widely used criteria for comparing the discriminatory capacity of
a series of binary response regression models and the AUC is more suitable when
the variable is Boolean.

The ROC curve relies on false/true–positive/negative tests, where sensitivity is the
proportion of event responses that were predicted to be events and specificity is the
proportion of non-event responses that were predicted to be non-events. The plot of
sensitivity (i.e., hit rate) versus 1-specificity (i.e., false alarm rate) is the ROC curve;
the AUC measures the accuracy of the detection system and does not require any as-
sumptions concerning the shape, form, or underlying signal and noise distributions
(Saveland and Neuenschwander 1990). This statistic is measure of model discrim-
ination: 0.5 suggests no discrimination, 0.7–0.8 suggests acceptable discrimination
and 0.8–0.9 suggests excellent discrimination (Hosmer and Lemeshow 2000).

Bootstrap-Based Test for Covariate Selection

In order to determine the variables to be introduced into the GLM in (1), a
bootstrap-based test was used. For a given size k, let AUC (k) be the AUC obtained
with the best subset of k variables:

AUC (k) = max
1≤ j1< j2<...< jk≤p

AUC j1,..., jk (2)

where AUC j1,..., jk is the AUC obtained from the ROC constructed with the theoretical
probabilities given by the GLM:

p j1,..., jk (Xi ) =
exp

(
α̂ + α̂ j1 · X j1 + . . .+ α̂ j k · X jk

)

1+ exp
(
α̂ + α̂ j1 · X j1 + . . .+ α̂ j k · X jk

) (3)

Given a subset of size q, consideration is given to a test for the null hypothesis:

H0 (q ) : AUC (q ) ≥ max
r >q

AUC (r ) (4)

versus the general hypothesis:

H1 : AUC (q ) < max
r >q

AUC (r ) (5)
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Selecting Variables for Modeling Lightning Fire Risk

That is to say, under the null hypothesis, the maximum AUC is obtained with
some subset of q covariates whereas the maximum AUC is obtained with some
combination of r > q covariates.

To test H0, given the sample {Xi , Yi}ni=1 of (X ,Y ), we used the following test
statistics:

T̂ = max
r≥q

̂AUC (r )− ̂AUC (q )

with ̂AUC (k) = max
1≤ j1< j2<...< jk≤p

̂AUC j1,..., jk

(6)

where ̂AUC j1,..., jk is the AUC obtained from the estimated probabilities p̂ j1,..., jk (Xi )
for i = 1, . . . ,n, obtained by fitting the model in Eq. (3) and leaving out the ith data
point.

This estimation can be carried out using the local scoring algorithm (Opsomer
2000). Briefly, the local scoring algorithm is analogous to the use of iteratively
reweighted least squares (McCullagh and Nelder 1989) for solving likelihood and
nonlinear regression equations.

Note that if the null hypothesis is verified, then T̂ should be close to zero,
but will generally be positive. Therefore, the test rule for checking H0 is that the
null hypothesis is rejected if T̂ is large enough. In order to detect if the true T is
significantly positive, it is necessary to build an interval [a,∞)where the hypothetical
T value is placed with a determined probability. That is to say, the lower a are
calculated such that the following probability is complied with: p (T̂ > a) = 1 − α.
Therefore, the test rule for checking H0, with an asymptotic significance level α,
is that the null hypothesis is rejected if a > 0. However, in order to obtain a
it is necessary to know the distribution of the estimate for T̂ . It is well known,
nevertheless, that the asymptotic theory for determining such percentiles is not
closed; therefore, resampling methods such as bootstrap introduced by Efron (1979)
are widely used for this purpose.

The steps to obtain the value for a are as follows:

• Obtain T̂ from the sample data as explained above.

• For b = 1 to B (e.g., B = 1000), simulate the bootstrap sample
{(

X∗b

i , Y∗b
i

)}n

i=1
by randomly sampling the n items from the original dataset {(Xi, Yi)}ni=1 with
replacement (i.e., each individual value (Xi, Yi) has a probability n−1 of re-
occurring) and obtain the bootstrap estimates T̂∗b.

Finally, the value of a is given by a = T̂ α/2 where T̂ p represents the percentile
p of the bootstrapped estimates T̂ ∗1, . . . , T̂ ∗B . The test rule based on T consists of
rejecting the null hypothesis if a > 0. Applying this test to q = 1, . . . , p − 1 is an
important step in a covariate selection procedure. If H0 is not rejected, only the
subset of the q covariates Xj1 ., . . . , Xjq . that maximize ̂AUC(q ) will be retained, with
the remaining covariates eliminated from the model. In all other cases, the test will
be repeated with q+1 variables until the null hypothesis is not rejected. More details
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C. Ordóñez et al.

Figure 2. All possible subset models for the example. For each subset size, the
area under the ROC curve (AUC) is shown for each model. (Color
figure available online.)

of the bootstrap methodology for variable selection are given in Roca-Pardiñas et al.
(2009).

RESULTS AND DISCUSSION

A plot of the AUC corresponding to all the possible model combinations (from
1 to 16 explanatory variables) is shown in Figure 2. In each subset, q represents the
number of variables included in the model. The evolving curve corresponding to
the models with the highest AUC values is also presented (Table 2). Also included,
along with the increases in the AUC obtained in response to rises in q, is the number
of new variables included in the model in order to obtain this maximum value each
time. The increases in the AUC values are plotted in Figure 3. Based on Table 2,
it can be observed that if only one variable (q = 1) is selected, the best AUC is
obtained for the variable X 10 (forested area). In this case, the area equals 0.716,
which suggests acceptable discriminatory ability.

The AUC increases as the number of variables included in the model rises to
a given q. Furthermore, it should be noted that, as new variables enter, the AUC
continues to increase, although more gradually, as is evident from the �AUC column
in Table 2 and from Figure 3. This is indicative of the fact that, as the number of
variables increases, the new variables included in the model represent a refined
behaviour with respect to those that are already present. The result is that the
improvements in the AUC value are increasingly subtle. Moreover, when q > 11, the
value of the AUC is reduced.
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Selecting Variables for Modeling Lightning Fire Risk

Table 2. AUC and increment in AUC (T̂) obtained with each selected model of
size q.

q AUC T̂ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

1 0.716 — x
2 0.769 0.053 x x
3 0.794 0.025 x x x
4 0.802 0.008 x x x x
5 0.804 0.002 x x x x x
6 0.807 0.003 x x x x x x
7 0.810 0.003 x x x x x x x
8 0.811 0.001 x x x x x x x x
9 0.812 0.001 x x x x x x x x x
10 0.814 0.002 x x x x x x x x x x
11 0.815 0.001 x x x x x x x x x x x
12 0.814 –0.001 x x x x x x x x x x x x
13 0.813 –0.001 x x x x x x x x x x x x x
14 0.811 –0.002 x x x x x x x x x x x x x x
15 0.810 –0.001 x x x x x x x x x x x x x x x
16 0.809 –0.001 x x x x x x x x x x x x x x x x

For q > 11 (marked in bold), the AUC decreases.

From the analysis of the way in which the AUC evolves in response to the inclu-
sion of new variables, it is possible to deduce that there is an optimal intermediate
point between the number of variables that are considered in the model (preferably
low) and the AUC value (preferably high). To delimit this point, the test for the

Figure 3. Value of T̂(continuous line) and the corresponding limit a (broken line)
for the 95% confidence interval of T . (Color figure available online.)
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null hypothesis H0(q) described in the Methods section was applied for each q. For
a 5% significance level, the null hypothesis was rejected until q = 3 and accepted
thereafter. Therefore, it can be concluded that the best subset of variables are X 1

(altitude), X 10 (forested area), and X 11 (number of strikes in coniferous woodland).
The AUC for this model indicated acceptable discriminatory ability (area, 0.7942).
For this case, the parameter estimates for the logistic GLM were α = –4.28, α1 =
–0.00156, α10 = 0.00404, and α11 = 0.0528. All the parameter estimates were signifi-
cant at the 1% level.

The procedure outlined above serves to determine the number of variables to
be included in the model. In addition, it ensures that the best choice of variables
of size q. In practice, however, various statistically equivalent optimal models of
size q can be obtained. Taking into account the corresponding test for the null
hypothesis H0(q), included in Table 3 are some models with q = 3 that are equiv-
alent to the optimal model. Nine equivalent models can be obtained, all of them
with very similar discriminatory ability (area, 0.7784–0.7888). Variables X 1, X 10,
or X 11 are always included in the equivalent models and this combination has
been chosen because it coincides with that obtained previously (Castedo-Dorado
et al . 2011). Other combinations are possible, but the advantage of the proposed
method is, in fact, that it is possible to choose the combination that is easiest to
interpret.

According to the α1 parameter estimate, altitude (X 1 variable) had a negative
effect on the probability of occurrence of lightning-induced fires; that is, lower
and intermediate elevations were found to be the most prone to fire. Although
several studies have shown a positive relationship between altitude and lightning
occurrence (Dissing and Verbyla 2003)—even in the studied region (Rivas Soriano
et al. 2001, 2005)—higher rainfall and lower temperatures at higher altitudes may
cause a negative link (Martı́n and Means 1982; Dı́az-Avalos et al. 2001). Moreover, the
altitudinal ecological limit of woodlands may also be important (Dissing and Verbyla
2003). These outcomes suggest that lightning-induced fires occur at altitudes where
fuel continuity and moisture are not limiting factors (Martı́n and Means 1982).
Other authors have reported similar results for lightning-induced fires in other
regions of Spain (Nieto et al. 2006).

Table 3. Models that are equivalent to the optimal with q = 3.

AUC X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X 12 X 13 X 14 X 15 X 16

79.42 x x x
78.88 x x x
78.64 x x x
78.21 x x x
77.98 x x x
77.97 x x x
77.96 x x x
77.95 x x x
77.90 x x x
77.84 x x x
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Selecting Variables for Modeling Lightning Fire Risk

According to Table 3, the other topographic variable tested (X 2, slope) was not
found to be significant for any of the models equivalent to the optimal model.
Similar results were found in other studies (McRae 1992 for Australia). However,
Dı́az-Ávalos et al. (2001), Wierzchowski et al. (2002), and Conedera et al. (2006)
found that lightning-induced fires mainly occurred on steeper slopes.

The presence of forested areas (variable X 10) was found to be significant both
in the optimal model and in four of the nine equivalent models. It was positively
associated with lightning-caused fire ignitions, confirming the results of Vázquez and
Moreno (1998), who found that lightning-induced fires in Spain affected a greater
proportion of woodlands than human-induced fires. This may be the result of the
canopy sheltering the forest floor from rainfall associated with lightning (Kourtz
and Todd 1992).

More surprising, perhaps, is the significance of the number of strikes in coniferous
woodland (variable X 11) in most of the equivalent models, bearing in mind that this
type of vegetation represents less than 25% of the woodland area in the province
of León (Junta de Castilla y León 2005). This seems to confirm that some types
of vegetation cover are more prone to lightning-induced fire than others (Manry
and Knight 1986; Granstrom 1993; Dissing and Verbyla 2003; Krawchuk et al. 2006;
Evett et al. 2008). The fact that variable X 11 is contained in almost all the optimal
models is some indicator of its importance, although this has not been proved
mathematically.

Lightning ignition may occur when the electrical current ignites fine fuels on
the forest floor (usually duff) at the base of a tree (Latham and Williams 2001) or
when living trees act as lightning conductors (Ogilcie 1989). Differences in duff
layer, produced by differences in vegetation type, would also result in different rates
of heating and therefore differences in flammability (Latham and Williams 2001).
Duff layer of needles under conifers is a more suitable fire ignition source than the
duff layer in a hardwood stand (Flannigan and Wotton 1991). Deciduous species
decrease the duff depth and, consequently, the probability of ignition (Latham and
Schlieter 1989).

In addition, the high flammability of coniferous species (due to their high resin
and essential oil content) and the abundance of highly flammable species in the
understory of the Pinus stands (Erica sp., Genistella tridentata, Calluna vulgaris, etc.)
in the province of León may help fire propagation after ignition (Vélez 1990; Bond
and Van Wilgen 1996).

The bootstrap methodology revealed no relationship between lightning density
(variables X 3 and X 7) and the characteristics of lightning discharges (charge and
intensity, variables X 5 and X 6), and fuel ignition. Regarding lightning density vari-
ables, the explanation is that higher densities of flashes are generally followed by
greater rainfall (Rorig and Ferguson 1999; Rorig and Ferguson 2002; Álvarez-Lamata
2005). A similar result was found for Spain by Vázquez and Moreno (1993), suggest-
ing that a very large number of lightning strikes is needed for several ignitions to
take place.

The resulting map of the probability of occurrence of lightning-induced fires
for the period 2002–2007 is shown in Figure 4. Probability estimates were obtained
from the optimal model since it had the best discriminatory capacity. The high-
est probability of fire is at intermediate altitude in the province where coniferous
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C. Ordóñez et al.

Figure 4. Spatial distribution of the probability of occurrence of lightning-induced
fires in the province of León in 2002–2007 (pixels, 3 × 3 km).
Probabilities were based on the optimal model (variables X 1, X 10, and
X 11).

woodlands are the dominant type of land cover. Comparing Figures 1B and 4, it can
be observed that there is general agreement regarding the most lightning-induced
prone areas. The overestimation is probably due to the fact that the number of
pixels where lightning fires do not occur is much greater than the percentage of
pixels where lighting fires do occur. In fact, in a previous analysis of the data using lo-
gistic regression and automatic selection procedures for the independent variables
(Castedo-Dorado et al. 2011), the percentage of pixels where a lightning-caused fire
can be expected is also over-predicted. However, it must be borne in mind that errors
resulting in overestimation of the number of pixels in relation to fire occurrence
are of much less important than errors resulting in underestimation.

CONCLUSIONS

We used ROC analysis based on the logistic GLM for binary responses to deter-
mine the number of covariates q and select the best subsets of size q that would es-
tablish the model with best discriminatory capacity for estimating lightning-induced
fire occurrence for a case study of León province in northwest Spain. Of the
16 variables initially considered, only three were necessary to obtain an optimal
model, based on altitude, forested area and the number of strikes in coniferous
woodland as independent variables. The AUC for this model indicated acceptable
discriminatory ability (area, 0.7942). This optimal model can be considered equiv-
alent to another nine models with three covariates. This is very interesting from
a practical point of view, because it models enables models to be generated that
include variables of interest (i.e., easy to measure, easy to obtain accurately, etc).

264 Hum. Ecol. Risk Assess. Vol. 19, No. 1, 2013
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Selecting Variables for Modeling Lightning Fire Risk

This statistical methodology can be usefully applied to the spatially explicit assess-
ment of fire risk, for combination with models such as FARSITE (Finney 1998), to
plan and coordinate efforts to identify areas at greatest risk and to design long-term
wildfire management strategies. In addition, both the optimal and equivalent mod-
els can easily be integrated with other sources of risk (e.g., socioeconomic causes) in
operational wildfire risk systems, within geographic information systems.

The proposed method is time consuming to apply but is easily automated, as
the same model is used for different combinations of independent variables. The
methodology used for this case study can be applied to other wildfire risk assessment
situations where multiple and interconnected covariates are available. Studies can
also be carried out at different spatial scales.

Future research will cover the application of a spatial regression logistic model
to solving the same problem so as to take into account possible spatially correlated
variables.
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